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In recent years, thanks to the inherent powerful feature representation and learning abilities of the convo-

lutional neural network (CNN), deep CNN-steered single image super-resolution approaches have achieved

remarkable performance improvements. However, these methods are often accompanied by large consump-

tion of computing and memory resources, which is difficult to be adopted in real-world application scenes.

To handle this issue, we design an efficient Feature De-redundancy and Self-calibration Super-resolution net-

work (FDSCSR). In particular, a Feature De-redundancy and Self-calibration Block (FDSCB) is proposed to

reduce the repetitive feature information extracted by the model and further enhance the efficiency of the

model. Then, based on FDSCB, a Local Feature Fusion Module is presented to elaborately utilize and fuse the

feature information extracted by each FDSCB. Abundant experiments on benchmarks have demonstrated

that our FDSCSR achieves superior performance with relatively less computational consumption and storage

resource than other state-of-the-art approaches. The code is available at https://github.com/IVIPLab/FDSCSR.
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1 INTRODUCTION

The main task of single-image super-resolution (SISR) aims to restore faithful high-

resolution (HR) images with rich texture details from degraded low-resolution (LR) images

[10, 11]. Nevertheless, SISR is still a challenging ill-posed issue, since a particular LR image may be

degraded from a batch of HR ones. To solve this issue, many SISR solutions have been presented.

Recently, as deep learning has played an important role in the fields of computer vision and im-

age processing, many super-resolution solutions on account of convolutional neural networks

(CNN) have been devised [5, 26, 43]. For example, Dong et al. [7] took the lead in applying CNN to

the general image super-resolution tasks and presented a CNN-based image super-resolution

(SRCNN) method that achieved better performance than traditional methods. After that, with

the introduction of residual networks [14] and densely connected networks [16], lots of sophis-

ticated deep SISR solutions have been presented. For instance, Kim et al. [21] first presented a

very deep single image super-resolution model, which is a 20-layer deep CNN, and used residual

learning to accelerate model convergence and improve super-resolution performance. DRCN [22]

and DRRN [38] used a recursive strategy to ensure that the network is deepened while reducing

the number of parameters of the model. Tai et al. [39] introduced a persistent memory network

containing recurrent units and gating units to improve network feature extraction and representa-

tion. Lim et al. [30] presented enhanced deep residual networks by further increasing the network

depth better use the relationship between channels. Li et al. [25] suggested to use the multi-scale

image features to enhance information and proposed a multi-scale residual network.

Although these image super-resolution models have made great progress, since the performance

improvement of these models is often accompanied by the increase of model depth and complex-

ity, their parameters and computational overhead are large and difficult to be applied in realistic

scenes. Therefore, how to better deal with the balance between model complexity and performance

has become a hot research problem [8, 31, 33, 45, 54, 55]. Ahn et al. [2] presented a fast, accurate,

and efficient cascaded residual network (CARN), which used a cascade scheme at the global

and local levels to aggregate features from different layers. Hui et al. [18, 19] designed an infor-

mation distillation network (IDN) for lightweight image super-resolution and further designed

an information multi-distillation network (IMDN). Zhu et al. [53] presented a compressed

back projection network (CBPN) by cascading up- and down-sampling layers to simultaneously

generate features in both low- and high-resolution spaces. As the width and depth of the network

increase, many features containing repeated information will be extracted and used [13, 32], which

will increase the computational consumption of the network and may affect the SR performance to

some extent. To address this problem and reduce the complexity of the network model, we design

an efficient yet effective Feature De-redundancy and Self-Calibration Block (FDSCB). Based
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on this carefully designed block, we devise a Local Feature Fusion Module (LFFM), which is

used to utilize and fuse the features distilled by the proposed FDSCB as much as possible. Finally,

based on the LFFM module, a Feature De-redundancy and Self-Calibration Super-Resolution

network (FDSCSR) is proposed.

The main contributions of this work can be reported as follows:

• We devise a FDSCB, which can reduce the extracted duplicate feature information and cali-

brate the network, thus reducing the computational resource consumption of the model.

• We propose an LFFM to fully extract and fuse the features extracted by FDSCB. Based on

LFFM, we further present a FDSCSR for efficient SISR.

• We explore reducing the repetitive feature information distilled by the network to reduce

the amount of computation, re-weight and calibrate the network to improve its feature ex-

traction capability. Our model can achieve an excellent balance between performance and

computational consumption.

2 RELATED WORKS

As a pioneer work in SISR tasks, SRCNN [7] achieved competitive performance to traditional SR

methods with a three layers CNN network. Since then, deep CNN steered SR models have been

continuously designed and obtained excellent performance [4, 20, 25, 44, 46, 48, 49]. Zhang et al.

[52] introduced the channel attention mechanism into residual connections to make the network

mainly focus on high-frequency information. Hu et al. [15] presented a compression and excita-

tion network, which has achieved great progress in many computer vision tasks. To explore the

relationship between different statistical features, Dai et al. [6] propose a second-order channel at-

tention mechanism by using second-order feature statistics to adaptively re-scale channel features.

Guo et al. [12] presented a closed-loop dual regression network, which introduced an additional

constraint to limit the mapping space between high- and low-resolution images. To exploit the

cross-scale feature correlation of images, Mei et al. [36] presented a cross-scale non-local atten-

tion network to combine cross-scale non-local priors and intra-scale non-local priors.

Although these solutions mentioned above have achieved remarkable performance, they are

difficult to be adopted in real-world applications, since these methods are accompanied by large

computational overhead and parameter amount. To handle the above problems, Hui et al. [18, 19]

devised IMDN. Li et al. [28] proposed a linearly assembled pixel adaptive regression scheme

(LAPAR), which transformed the learning of the mapping from LR space to HR space into a linear

coefficient regression problem. CFSRCNN [40] cascades several types of feature extraction mod-

ules, which are utilized to learn and fuse features from different paths. Zhu et al. [54] proposed an

expectation-maximizing attention mechanism (EMASRN) to better equilibrate the number

of parameters, computational power, and performance. The above methods have achieved good

performance, but there are still many problems, including high model complexity and difficulty

in recovering texture details. Wang et al. [41] presented a lightweight adaptive weight network

(AWSRN) by constructing an adaptive weight residual unit and an adaptive weight multi-scale

module. Zhang et al. [50] presented a global and local adjustment network (GLADSR) to en-

hance the network capacity. Li et al. [29] presented an efficient densely connected distillation

network (DCDN) by combining feature fusion units and densely connected distillation blocks

containing selective cascades and dense distillation components. As a complementary solution

to CNN, some Transformer-based SISR models have been designed. For example, Gao et al. [9]

designed a lightweight bimodal network via symmetric CNN and recursive Transformer. To dy-

namically adjust the neurons’ response to the context, Li et al. [27] proposed a lightweight cross-

receptive focused inference network, which is a hybrid outcome of CNNs and Transformers.
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Fig. 1. The pipeline of FDSCSR. Among them, the dashed box is the LFFM. ⊕ denotes the element-wise

summation operation.

3 FEATURE DE-REDUNDANCY AND SELF-CALIBRATION NETWORK

This section mainly introduces the proposed network architecture, the FDSCB and the LFFM in

detail.

3.1 Network Architecture

In this part, we introduce the backbone of our proposed FDSCSR. As depicted in Figure 1, the

entire FDSCSR mainly consists of three parts, including the shallow feature extraction part, the

deep feature extraction and fusion part by stacking multiple LFFM, and the final reconstruction

part.

In this work, ILR and IH R stand for the LR input and the related HR counterpart, respectively. ISR

represents the reconstructed image. In particular, an ordinary 3 × 3 convolutional layer is utilized

to distill superficial features on the primitive observed LR image. This process can be formulated

as

Fsf = Hsf (ILR ). (1)

Among them,Hsf (·) is the shallow feature extraction operation, Fsf is the extracted rough shallow

features, which will be fed to the deep feature extraction portion for further feature extraction.

The deep feature extraction and fusion portion mainly consists of several stacked LFFMs, a 1×1

convolutional layer, and an ordinary 3 × 3 convolutional layer. The output of each LFFM will be

sent to the end of the network for cascading to make full use of the feature information extracted by

each LFFM. The 1×1 convolution operation is mainly applied for feature aggregation and channel

reduction. After that, an ordinary 3 × 3 convolutional layer is applied to smooth the aggregated

features. This part can be represented as

F1 = H 1
l f f m (Fsf ), (2)

Fk = Hk
l f f m (Fk−1),k = 2, . . . ,m, (3)

Fdf = H3×3 (H1×1 (Hcat (F1, . . . , Fm ))), (4)

where Fk represents the feature map extracted by the kth LFFM and Hk
l f f m

(·) is the kth LFFM.

H3×3 (·) and H1×1 (·) denote 3 × 3 convolutional layer and 1 × 1 convolutional layer, respectively;

Hcat (·) represents the concatenated operation in the channel dimension; and Fdf is the final feature

extracted by the deep feature extraction and fusion part.

The reconstruction section mainly consists of an ordinary 3 × 3 convolutional layer together

with a pixel-shuffle operation [37]. The 3 × 3 convolutional layer is mainly applied to change the
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Fig. 2. The pipeline of FDSCB.

number of feature channels into a multiple of s2 (s is the upsampling factor). Then the pixel-shuffle

layer performs pixel-shuffling of the feature maps of size H ×W × s2 · c into size sH × sW · c . The

episodic feature map of the reconstruction part is the residual sum of shallow features and deep

features. This part can be represented as

ISR = Hr e (Fsf + Fdf ) = Hps (H3×3 (Fsf + Fdf )), (5)

where H3×3 (·) denotes 3 × 3 convolutional layer, Hr e (·) is the reconstruction function, and Hps (·)
stands for the pixel-shuffle layer.

Given a set of training images {I j
LR
, I j

H R
}Nj=1, where N represents the number of training image

pairs. Therefore, the loss function of FDSCSR can be formulated as

L(Θ) =
1

N

N∑

j=1

�
�
�
HF DSCSR

(
I j
LR

)
− I j

H R
�
�
�1
, (6)

where HF DSCSR (·) represents the proposed network, Θ denotes the learnable parameter sets in

FDSCSR, and | | · | |1 is the l1 norm.

3.2 Feature De-Redundancy and Self-Calibration Block

To reduce the redundant information and fully distill useful features, we propose a FDSCB, which

is shown in Figure 2. Its input first passes through an ordinary 1× 1 convolutional layer for initial

feature extraction. Then the channel splitting operation is used to divide the features extracted

by the convolutional layer into two parts. The first part serves as the input of the self-calibration

module and the second part serves as the input of the de-redundancy module

Fsc , Fdr = Hcs (H1×1 (Fin )), (7)

where H1×1 (·) denotes 1 × 1 convolutional layer; Hcs (·) is the channel splitting operation; Fsc and

Fdr represent the input features of the self-calibration (SC) module and the de-redundancy

(DR) module, respectively; and Fin represents the input of the FDSCB.

The DR part of FDSCB is mainly composed of a depthwise separable convolutional layer, ordi-

nary 3 × 3 convolutional layers, and channel attention (CA) modules. Compared with ordinary

convolution, depthwise separable convolution can significantly reduce the number of parameters
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and computation cost. The depthwise separable convolution consists of a 3 × 3 channelwise con-

volution together with a 1 × 1 pointwise convolution. This part further uses the channel splitting

operation to split the input feature Fdr to two parts: F 1
dr

and F 2
dr

. The de-redundant part can be

expressed in detail as

F 1
dr , F

2
dr = Hcs (Fdr ), (8)

Fdr−out = Hcat

(
F 2

dr ,Hca

(
H3×3

(
σ
(
Hpw

(
Hdw

(
F 1

dr

))))))
, (9)

where H3×3 (·) denotes an ordinary 3 × 3 convolutional layer, Hcs (·) represents the channel

splitting operation operation, Hcat (·) represents the concatenated operation, Hdw (·) and Hpw (·)
represent the channelwise convolution and pointwise convolution operations, σ indicates the

ReLU activation operation,Hca is the channel attention module, and Fdr−out represents the output

of the de-redundant part.

The SC part is shown in the upper in Figure 2, which is mainly composed of a 2 × 2 transposed

convolutional layer; a 3 × 3 strided convolutional layer (with stride size 2); ordinary 3 × 3 con-

volutional layers; and the Sigmoid operation. To enlarge the receptive field of the network, the

input feature maps are up-sampled and down-sampled by a general factor of 2 by the transposed

convolutional layer and stride convolutional layer, respectively. Then the weights of the extracted

features are calculated by Sigmoid. The features extracted by the 3 × 3 convolutional layer are re-

weighted and calibrated. Finally, the re-weighted features are fused through a 3 × 3 convolutional

layer. The self-calibration part can be represented as

Fsc−out = H3×3 (H3×3 (Fsc ) ∗ Hsiд (Fsc + Hscon (σ (Hdcon (Fsc ))))), (10)

where H3×3 (·) denotes 3× 3 convolutional layer, Hsiд (·) represents the Sigmoid layer, and Hscon (·)
andHdcon (·) represent the stride convolution with stride 2 and transposed convolution with kernel

size 2, respectively. Fsc−out indicates the output of the self-calibration section.

The output features of the de-redundant part and the self-calibration part will be concatenated

and fused through a convolutional layer. Finally, we perform residual connection between the

input and the fused features to obtain the output feature maps of the FDSCB. This process can be

expressed as

Fout = Fin + H1×1 (Hcat (Fdr−out , Fsc−out )), (11)

where Hcat (·) represents the concatenated operation, H1×1 (·) denotes 1 × 1 convolutional layer,

and Fout represents the output of the FDSCB.

3.3 Local Feature Fusion Module

To fully extract and utilize the feature information extracted by the FDSCB, we design an LFFM

that aggregates the output features of each FDSCB efficiently. This module can make full use of the

feature information extracted by each FDSCB to distill more useful information for reconstruction.

As given in Figure 1, the LFFM mainly consists of k FDSCBs (in this article, the value of k is 6) and

a 1 × 1 group convolution. Among them, group convolution is mainly used for feature channel

dimension reduction to reduce model computation. The module can be represented as

F 1
f db = H 1

f db

(
Fn−1

l f f m

)
, (12)

Fk
f db = Hk

f db

(
Fk−1

f db

)
,k = 2, 3, . . . ,m, (13)

Fn
l f f m = Fn−1

l f f m + Hдconv

(
Hcat

(
F 1

f db , F
2
f db , . . . , F

m
f db

))
, (14)

where Fk
f db

indicates the output of the kth FDSCB, Fn−1
l f f m

and Fn
l f f m

stand for the import and

export features of the nth LFFM, respectively, Hk
f db

(·) is the kth FDSCB, Hcat (·) represents the
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concatenated operation, and Hдconv (·) means the 1 × 1 group convolutional layer to perform

dimensionality reduction.

4 EXPERIMENTS AND ANALYSES

4.1 Datasets and Metrics

In this experiment, we choose the DIV2K [1] dataset as the training set for our model, which

includes 800 training images and 100 validation images. It is widely used for image super-

resolution tasks. For testing, we apply five benchmark datasets: Set5 [3], Set14 [47], BSDS100 [34],

Urban100 [17], and Manga109 [35]. Meanwhile, to evaluate and validate the effectiveness of SR

models, peak signal-to-noise ratio (PSNR) and flexible structural similarity (SSIM) [35] in-

dexes are chosen as the evaluation criteria. In addition, like many previous methods [2, 18, 19, 30,

52], all the evaluation indicators are calculated on the Y channel embedded in the related YCbCr

space.

4.2 Experimental Details

During training, we use bicubic interpolation to downsample the HR images at different scales to

obtain corresponding LR ones. Furthermore, we rotate and horizontally flip the samples at random

to augment the training dataset. Image patches with 48×48 pixels are randomly acquired from the

training dataset as input to the network. We elect Adam as the optimizer to train our SR model,

and its parameter is set as β1 = 0.9, β2 = 0.999, and ε = 10−8. The initial learning rate is set as

2× 10−4, and then it is finally decayed to 6.25× 10−6 in the form of cosine annealing. Two models,

FDSCSR and FDSCSR-S, are reported. FDSCSR applies the channel number of 48, while FDSCSR-S

adopts a smaller channel number of 36. The presented SR network is conducted using the Pytorch

platform with a single NVIDIA 2080Ti GPU.

4.3 Model Complexity Studies

To assess the effectiveness of our presented FDSCSR, this section analyzes the complexity of the

FDSCSR model. Figure 3 depicts the comparison of the parameters and PSNR values on Set5 (×4).

We can see that our proposed FDSCSR and FDSCSR-S can better balance the parameters and perfor-

mance of the model. Compared with methods such as AWSRN-M [41], CBPN [53], and CARN [2],

which have a huge number of parameters, FDSCSR achieves better performance. Furthermore, our

lightweight FDSCSR-S model achieves far fewer parameters than methods such as IMDN [18],

LAPAR-A [28], and MADNet [24] but gets better performance than these methods.

In addition, to better assess the effectiveness of our proposed model, Figure 3 also shows the

comparison of Multi-Adds and PSNR values on Set5 (×4). We can observe that FDSCSR not only

achieves better performance than methods such as GLADSR [24] and MADNet [24] with similar

Multi-Adds but also achieves better performance than methods such as SMSR [42], LAPAR-A [28],

and CARN [2] with larger Multi-Adds. All the above results illustrate that FDSCSR is an efficient

model that can well balance model complexity and performance.

Meanwhile, in Figure 5, we also provide the inference speed comparisons between our FDSCSR

with some representative lightweight SISR methods. Fortunately, our FDSCSR achieves competi-

tive results with comparable parameters and acceptable execution time.

4.4 Ablation Study

4.4.1 Verification of the Basic Modules in FDSCB. This part is used to assess the effectiveness

of the respective component in our designed FDSCB. Table 1 shows the experimental results of

each scheme on the Urban100 dataset (×4). The first row in the table is the experimental result of
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Fig. 3. PSNR vs. Parameters (left) and PSNR vs. Multi-Adds (right) on Set5 dataset (×4).

Fig. 4. Visual feature maps of basic modules in FDSCB. It should be noted that these features are derived

from the input of the reconstruction part to verify the effectiveness of the DR module and the SC module

for reconstructing texture details.

Fig. 5. Inference speed study on Set5 (left) and Set14 (right) (×4).

using ordinary 3 × 3 convolutional layer to replace the feature DR in FDSCB, and the second row

is the experiments of using ordinary 3 × 3 convolutional layer to replace the feature SC module

in FDSCB, and the last row is the experimental results with both DR and SC modules. It can be

seen from the observation between the last row and the first row in the table that the feature DR

module has fewer parameters and calculations, and its PSNR value is much higher than that of the

ordinary convolutional layer. In addition, the comparison between the last and the second rows

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 3, Article 110. Publication date: February 2023.
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Table 1. Verification of Basic Modules in FDSCB on

Urban100 (×4)

Methods Params Mult-Adds PSNR SSIM

w/o DR 549K 35.3G 25.97 0.7830

w/o SC 401K 22.7G 25.63 0.7708

with DR & SC 478K 31.1G 26.12 0.7866

The best results are highlighted in bold.

Table 2. Effectiveness of Basic Part in Feature DR Module on Manga109 (×4)

Scale Conv-3 DPConv CA Params Multi-Adds PSNR SSIM

×4 ✓ ✕ ✕ 497K 32.304614G 30.37 0.9072

×4 ✕ ✓ ✕ 476K 31.128883G 30.37 0.9069

×4 ✕ ✓ ✓ 478K 31.128885G 30.51 0.9087

The best results are highlighted in bold.

shows that although the parameters of an ordinary convolutional layer are much smaller than

that of the feature SC module, the PSNR value of the feature SC part is 0.49 dB higher than that

of the ordinary convolutional layer. In Figure 4, we further visualize the feature maps of different

modules in FDSCB, from which we can see that with both DR and SC modules, the extracted

features contain abundant textural details for better reconstruction. These experiments further

illustrate the effectiveness of each part in our presented FDSCB.

4.4.2 Effectiveness of Basic Modules in Feature DR Network. This part is used to verify the effec-

tiveness of the depthwise separable convolution (DPConv) and CA mechanisms of the feature

DR in FDSCB. Table 2 provides the experimental results on the Manga109 (×4) test set. Ordinary

3 × 3 convolutional (Conv-3) and DPConv are alternatively verified. It can be observed from

the first two rows in the table that the parameters and computation consumption of DPConv is

smaller than that of the ordinary Conv-3. Their PSNR values are nearly the same, only the value of

SSIM is reduced by 0.0003. We can conclude that the DPConv can reduce the model size without

significant performance penalty. In addition, by comparing the last two rows in the table we can

observe that the CA mechanism only brings a little increase of parameters, while the PSNR value

is increased from 30.37 to 30.51 dB. This fully demonstrates the rationality and effectiveness of

using DPConv and CA in DR.

4.5 Comparison with Some States of the Art

To verify the effectiveness of our proposed FDSCSR, we compare it with some representative

lightweight SR methods, including DRCN [22], LapSRN [23], DRRN [38], IDN [19], CARN [2],

CBPN [53], IMDN [18], AWSRN [41], MADNet [24], RFDN [31], GLADSR [50], DCDN [29],

SMSR [42], LAPAR [28], ECBSR [51], and EMASRN [54]. Table 3 reports the quantitative com-

parisons of our proposed FDSCSR with other competitive approaches on five benchmark test

sets. As can be observed from the table that our presented FDSCSR-S solution achieves compet-

itive performance than other methods with similar number of parameters, such as CBPN-S [53],

IMDN [18], ECBSR [51], RFDN [31], and LAPAR-A [28]. Furthermore, FDSCSR can achieves better

super-resolution performance than those methods with a larger number of parameters and com-

putations, such as CBPN [53], AWSRN-M [41], MADNet [24], and SMSR [42], and so on. These

results fully demonstrate the effectiveness of the proposed FDSCSR.

In addition, to more intuitively show the effectiveness of our proposed FDSCSR model,

Figures 6, 7, and 8 presents several visual comparisons among FDSCSR, FDSCSR-S, and several
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Table 3. Average Quantitative Comparisons on Benchmark Datasets

Methods Scale Params Multi-Adds
Set5 Set14 BSD100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

DRCN [22]

×2

1,774K 17974.3G 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.55/0.9732

LapSRN [23] 813K 29.9G 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100 37.27/0.9740

DRRN [38] 297K 6796.9G 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.88/0.9749

IDN [19] 553K 124.6G 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.01/0.9749

CARN [2] 1,592K 222.8G 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765

CBPN [53] 1,036K 240.7G 37.90/0.9590 33.60/0.9171 32.17/0.8989 32.14/0.9279 —

CBPN-S [53] 430K 101.5G 37.69/0.9583 33.36/0.9147 32.02/0.8972 31.55/0.9217 —

IMDN [18] 694K 158.8G 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774

AWSRN-M [41] 1,063K 244.1G 38.04/0.9605 33.66/0.9181 32.21/0.9000 32.23/0.9294 38.66/0.9772

MADNet [24] 878K 187.1G 37.85/0.9600 33.38/0.9161 32.04/0.8979 31.62/0.9233 —

RFDN [31] 534K 123.0G 38.05/0.9606 33.68/0.9184 32.16/0.8994 32.12/0.9278 38.88/0.9773

GLADSR [50] 812K 187.2G 37.99/0.9608 33.63/0.9179 32.16/0.8996 32.16/0.9283 —

DCDN [29] 756K — 38.01/0.9606 33.52/0.9166 32.17/0.8996 32.16/0.9283 38.70/0.9773

SMSR [42] 985K 351.5G 38.00/0.9601 33.64/0.9179 32.17/0.8990 32.19/0.9284 38.76/0.9771

LAPAR-A [28] 548K 171.0G 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283 38.67/0.9772

ECBSR [51] 596K 137.3G 37.90/0.9615 33.34/0.9178 32.10/0.9018 31.71/0.9250 —

FDSCSR-S (Ours) 466K 121.8G 38.02/0.9606 33.51/0.9174 32.18/0.8996 32.24/0.9288 38.67/0.9771

FDSCSR (Ours) 823K 215.8G 38.12/0.9609 33.69/0.9191 32.24/0.9004 32.50/0.9315 38.89/0.9775

DRCN [22]

×3

1,774K 17974.3G 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 32.31/0.9328

DRRN [38] 297K 6796.9G 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.74/0.9390

IDN [19] 553K 56.3G 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381

CARN [2] 1,592K 118.8G 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.43/0.9427

IMDN [18] 703K 71.5G 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445

AWSRN-M [41] 1,143K 116.6G 34.42/0.9275 30.32/0.8419 29.13/0.8059 28.26/0.8545 33.64/0.9450

MADNet [24] 930K 88.4G 34.16/0.9253 30.21/0.8398 28.98/0.8023 27.77/0.8439 —

RFDN [31] 541K 55.4G 34.41/0.9273 30.34/0.8420 29.09/0.8050 28.21/0.8525 33.67/0.9449

GLADSR [50] 821K 88.2G 34.41/0.9272 30.37/0.8418 29.08/0.8050 28.24/0.8537 —

DCDN [29] 765K — 34.41/0.9273 30.31/0.8417 29.08/0.8045 28.17/0.8520 33.54/0.9441

SMSR [42] 993K 156.8G 34.40/0.9270 30.33/0.8412 29.10/0.8050 28.25/0.8536 33.68/0.9445

LAPAR-A [28] 594K 114.0G 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523 33.51/0.9441

EMASRN [54] 427K — 34.36/0.9264 30.30/0.8411 29.05/0.8035 28.04/0.8493 33.43/0.9433

FDSCSR-S (Ours) 471K 54.6G 34.42/0.9274 30.37/0.8429 29.10/0.8052 28.20/0.8532 33.55/0.9443

FDSCSR (Ours) 830K 96.4G 34.50/0.9281 30.43/0.8442 29.15/0.8068 28.40/0.8576 33.78/0.9460

DRCN [22]

×4

1,774K 17974.3G 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 28.98/0.8816

LapSRN [23] 813K 149.4G 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560 29.09/0.8900

DRRN [38] 297K 6796.9G 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.46/0.8960

IDN [19] 553K 32.3G 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942

CARN [2] 1,592K 90.9G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.42/0.9070

CBPN [53] 1,197K 97.9G 32.21/0.8944 28.63/0.7813 27.58/0.7356 26.14/0.7869 —

CBPN-S [53] 592K 63.1G 31.93/0.8908 28.50/0.7785 27.50/0.7324 25.85/0.7772 —

IMDN [18] 715K 40.9G 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075

AWSRN-M [41] 1,254K 72.0G 32.21/0.8954 28.65/0.7832 27.60/0.7368 26.15/0.7884 30.56/0.9093

MADNet [24] 1,002K 54.1G 31.95/0.8917 28.44/0.7780 27.47/0.7327 25.76/0.7746 —

RFDN [31] 550K 31.6G 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858 30.58/0.9089

GLADSR [50] 826K 52.6G 32.14/0.8940 28.62/0.7813 27.59/0.7361 26.12/0.7851 —

DCDN [29] 777K — 32.21/0.8949 28.57/0.7807 27.55/0.7356 26.09/0.7855 30.41/0.9072

SMSR [42] 1,006K 89.1G 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 30.54/0.9085

LAPAR-A [28] 659K 94.0G 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.42/0.9074

ECBSR [51] 603K 34.7G 31.92/0.8946 28.34/0.7817 27.48/0.7393 25.81/0.7773 —

EMASRN [54] 546K — 32.17/0.8948 28.57/0.7809 27.55/0.7351 26.01/0.7838 30.41/0.9076

FDSCSR-S (Ours) 478K 31.1G 32.25/0.8959 28.61/0.7821 27.58/0.7367 26.12/0.7866 30.51/0.9087

FDSCSR (Ours) 839K 54.8G 32.36/0.8970 28.67/0.7840 27.63/0.7384 26.33/0.7935 30.69/0.9113

The best and the second best results are highlight in red and blue, respectively.

representative lightweight SR methods. As can be evaluated from the figures, our devised FDSCSR

and FDSCSR-S not only have higher PSNR and SSIM values but also recover rich texture details

with better visual effects. The recovered images are more close to the ground truth. On the con-

trary, most of the compared methods cannot recover the textural details (such as edges) well, even
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Fig. 6. Visual comparison of FDSCSR, FDSCSR-S and, other lightweight SR methods for scale factor ×2.

Fig. 7. Visual comparison of FDSCSR, FDSCSR-S, and other lightweight SR methods for scale factor ×3.
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Fig. 8. Visual comparison of FDSCSR, FDSCSR-S, and other lightweight SR methods for scale factor ×4.

though they possess a larger number of parameters and computations. This further validates the

effectiveness and excellence of the proposed FDSCSR.

5 CONCLUSIONS

In this article, for the efficient image super-resolution task, we devised a FDSCSR. Specifically, we

proposed a lightweight and effective FDSCB as the basic unit of the overall network to reduce the

repeated feature information and fully calibrate the features. Furthermore, an LFFM is designed

to fully utilize and fuse the feature information extracted by each FDSCB. Extensive experiments

have validated that our presented FDSCSR model can achieve comparable performance and can

better balance model complexity and performance.
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