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Abstract—Real-time semantic segmentation, which can be
visually understood as the pixel-level classification task on the input
image, currently has broad application prospects, especially in the
fast-developing fields of autonomous driving and drone navigation.
However, the huge burden of calculation together with redundant
parameters are still the obstacles to its technological development.
In this article, we propose a Fast Bilateral Symmetrical Network
(FBSNet) to alleviate the above challenges. Specifically, FBSNet
employs a symmetrical encoder-decoder structure with two
branches, semantic information branch and spatial detail branch.
The Semantic Information Branch (SIB) is the main branch with
semantic architecture to acquire the contextual information of the
input image and meanwhile acquire sufficient receptive field. While
the Spatial Detail Branch (SDB) is a shallow and simple network
used to establish local dependencies of each pixel for preserving
details, which is essential for restoring the original resolution
during the decoding phase. Meanwhile, a Feature Aggregation
Module (FAM) is designed to effectively combine the output of these
two branches. Experimental results of Cityscapes and CamVid
show that the proposed FBSNet can strike a good balance between
accuracy and efficiency. Specifically, it obtains 70.9% and 68.9%
mIoU along with the inference speed of 90 fps and 120 fps on these
two test datasets, respectively, with only 0.62 million parameters
on a single RTX 2080Ti GPU. The code is available at https:
//github.com/IVIPLab/FBSNet.

Index Terms—Feature aggregation, local dependencies, real-
time, semantic segmentation.
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I. INTRODUCTION

S EMANTIC segmentation, as one of the three fundamental
computer vision tasks, is responsible for assigning a label

to each pixel in an input image [1]–[3]. It can be viewed as
a dense prediction task and what cannot be overlooked is the
parameter burden. However, to embed it in real-world terminal
equipment like augmented reality devices or autonomous driv-
ing chips, it is necessary to ensure that the model size and cal-
culation cost of the proposed model are as small as possible. In
comparison with developing large networks (e.g., VGGNet [4]
and ResNet [5], [6]) that pursue precision, designing real-time
semantic segmentation structures is the proper choice that meets
the needs of current real-world edge applications requiring fast
interaction speed.

Recently, many lightweight real-time segmentation networks
have been proposed to address the balance problem between
accuracy and inference speed (Fig. 1). For example, Paszke
et al. [7] proposed an Efficient Neural Network (ENet), which
drops the last stage to achieve a compact encoder-decoder frame-
work. However, the disadvantage of this model is that the recep-
tive field is too small to capture large objects. In order to collect
multi-scale contextual information, Mehta et al. [8] proposed the
Efficient Spatial Pyramid Network (ESPNet), which adopts the
efficient spatial pyramid module and convolution factorization
strategy. ESPNet achieved better accuracy than ENet with sim-
ilar parameters. The Image Cascade Network (ICNet [9]) is im-
proved from the Pyramid Scene Parsing Network (PSPNet [10]),
which uses three cascading branches to process images. Nev-
ertheless, this network is not suitable for low-resolution input
images. The Bilateral Segmentation Network (BiSeNet [11]) is
a dual-path model, which contains two branches which can pre-
serve the spatial details and obtain semantic information, respec-
tively. Meanwhile, a feature fusion module was proposed to ef-
fectively aggregate the different features of these two branches.
Based on BiSeNet, the fusion method of different features in
BiSeNet-v2 [12] is further optimized. Although the effect of
BiSeNet-v2 is much better than BiSeNet, the number of param-
eters and calculations has also increased a lot, which slows down
the inference speed. DFANet [13] proposed a feature reuse strat-
egy, which stacks Xception [14] models three times to yield the
purpose of expanding the receptive field and the interactive in-
tegration of features. Fast-SCNN [15] proposed a “learning to
downsample” module and merged the two-branch setup in the
encoder phase.
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Fig. 1. Accuracy-Speed-Parameters comparisons on the Cityscapes. Our FB-
SNet achieves a good balance between the accuracy, model size, and inference
speed of the model.

As we all know, when the depth of the network increases, the
transmission of information will become quite difficult. At the
same time, since the image resolution is down-sampled to a very
low level, this will cause a lot of boundary information to be lost
and cannot be recovered. Therefore, how to prevent information
loss is very important. Meanwhile, how to make full use of the
output features from the two-branch structure is also important.
Although the aforementioned methods have achieved outstand-
ing results, there is still the possibility of improvement in terms
of accuracy and speed. Based on the above observations and
considerations, we aim to explore a lightweight real-time se-
mantic segmentation model. To this end, we propose a novel
real-time network called Fast Bilateral Symmetrical Network
(FBSNet). FBSNet is designed for effective inference, includ-
ing higher accuracy and faster speed. FBSNet adopts a bilateral
symmetrical encoder-decoder structure, including a Semantic
Information Branch (SIB) and a Spatial Detail Branch (SDB).
In order to reduce the parameters of the model, we do not use
pre-trained models like ResNet [5] or VGG [4] as the back-
bone of the semantic information branch, but use our specially
designed lightweight Bottleneck Residual Unit (BRU) to build
this branch. BRU employs dilated factorized depth-wise sep-
arable convolutional layers to deepen the depth of the network
and guarantees large receptive fields for extracting features, thus
can drastically distill significant semantic information. Mean-
while, the SDB makes an effort to preserve spatial details at a
small computational cost with a Detail Residual Module (DRM).
Moreover, at the different stages of the SIB, we use channel
attention modules to enhance the long-distance dependencies
between channels. Correspondingly, to make up for the lost de-
tailed information in SIB, we use the spatial attention module
to generate an attention map for paying attention to the useful
spatial information and ignoring useless information like noise
in SDB. At the end of these two branches, we apply a Feature
Aggregation Module (FAM) to combine and enhance the fea-
tures at both semantic and spatial levels. As shown in Fig. 1, our
FBSNet achieves a good balance between the accuracy, model
size, and inference speed of the model.

In summary, the contributions of this paper are as follows:
� A lightweight Bottleneck Residual Unit (BRU) is proposed

to drastically distill significant semantic information. BRU
contains a small number of parameters and only needs less
calculation cost, but can extract rich features with different
receptive fields.

� A Detail Residual Module (DRM) is proposed to better
obtain shallow spatial features to compensate for the lost
details in the semantic information branch. Meanwhile, a
Feature Aggregation Module (FAM) is proposed to effec-
tively fuse image features from different branches, with the
goal to increase the global and local dependencies.

� A novel Fast Bilateral Symmetrical Network (FBSNet)
is presented for real-time image semantic segmentation.
FBSNet is a symmetrical encoder-decoder structure, com-
posed of a Semantic Information Branch (SIB) and a Spa-
tial Detail Branch (SDB), which can effectively extract
deep semantic information and preserve shallow bound-
ary details, respectively.

II. RELATED WORKS

A. Contextual Information

Contextual information is crucial in the field of deep learning-
based image processing methods. It contains a large number of
image features that can be used for subsequent tasks like clas-
sification, detection, segmentation, and other tasks to predict
high-quality results [16]–[20]. For example, ParseNet [21] uti-
lized global average pooling to generate weight feature maps for
enhancing contextual information. Methods like [22]–[24] em-
ployed dilated convolution with various dilation rates to capture
diversified contextual information. PSPNet [10], inspired from
DeepLab-V3 [24], applied spatial pyramid pooling (SPP) to cap-
ture global contexts. DFN [25] encoded the global context by
adding the global pooling on the head of the U-shape structure.
Based on the above observations, it can be found that increasing
the receptive field and acquiring a larger range of global contex-
tual information is what every method cares about, and it is also
beneficial to the final segmentation results.

B. Spatial Information

Spatial information is often ignored in the segmentation task.
One is that with the deepening of the network layer and the use
of consecutive down-sampling modules, the loss of spatial in-
formation is considered normal and unavoidable. The other is
that restoring spatial information is a difficult task, which often
consumes a lot of computing resources, so many methods ig-
nore it [26]–[28]. In fact, the preservation of spatial details has
a positive effect on the prediction of the final results. Common
methods, such as UNet [29], directly concatenate the shallow
details and the features with corresponding resolutions. This
operation will bring a large number of parameters and calcu-
lations, which is not good for the inference speed. In order to
supplement the spatial detail information, DABNet [30] inserted
features after different multiples of downsampling at different
stages in the phase of the encoder. ICNet [9] applied a cascading
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Fig. 2. Backbone comparison of commonly used two-branch image semantic segmentation models. Our FBSNet is significantly different from other models.
Specifically, the two branches of FBSNet have different structures due to different tasks.

Fig. 3. The complete architecture of our proposed Fast Bilateral Symmetrical Network (FBSNet).

method to supplement the missing boundary information. Some
models [22], [24] adopted dense connections, but cannot fulfill
the real-time requirement. These models are all effective meth-
ods, but the decoder lacks the guidance of semantic information,
resulting in unsatisfactory performance.

C. General Structure

In the past ten years, many researchers have made a lot of
efforts in network structure. However, many models still use
the network structure of image classification (e.g., VGGNet [4],
ResNet [5]) as the backbone of the segmentation model. Al-
though this is the easiest way, two problems cannot be ignored:
one is that this type of model has too many parameters, the other
is that frequent use of downsampling operations will cause a
large amount of feature loss, which is not conducive to feature
discrimination. To solve these problems, some representative
network structures came into being, and many subsequent net-
works are improved based on previous methods, such as U-shape
structure [29], [31], feature reuse [13], [21], and two-branch
structure [11], [12], [15]. In Fig. 2, we provide the structural
comparison of some commonly-used image semantic segmenta-
tion models. Among them, the U-shape structure used the sym-
metrical encoder-decoder, whose strategy is to merge the feature
maps of the corresponding stages. However, this kind of network

is bound to bring huge additional computation. Feature reuse
can enhance the network learning capacity and expand recep-
tive fields by reusing high-level features. However, refining the
spatial details is what prevents it from going further. Two-branch
structure performs separate extraction of semantic information
and spatial information in the encoder phase, and finally use a
feature fusion method before prediction. But this method still
lacks the interaction between the two branches, so there is still
a lot of room for improvement.

In contrast to previous methods, the differences of our
method are two-fold: (a) as for the two-branch structure, our
main branch (semantic information branch) has a symmetrical
encoder-decoder structure, while the spatial detail branch well
preserves the shallow boundary details without the downsam-
pling operations; (b) as for the feature fusion, to promote the
representation capability of the fused features, except for the
simple element-wise operation, we successively aggregate fea-
tures at both semantic and spatial levels with negligible param-
eters and computational overhead.

III. PROPOSED METHOD

In this part, we will introduce the proposed FBSNet with the
following parts: 1) Bottleneck Residual Unit (BRU); 2) Semantic
Information Branch (SIB) with channel attention module; 3)
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Fig. 4. Comparison of different residual modules. (a) SS-nbt module in LEDNet [28], (b) EAR module in MSCFNet [3], (c) Pyramid cascade module in
ESPNet [8], and (d) is our proposed Bottleneck Residual Unit (BRU). Among them, R, C, and D represent the dilation rate, the number of output channels, and the
depth-wise separable convolution operation, respectively.

Spatial Detail Branch (SDB) with spatial attention module; 4)
Network with initial block and Feature Aggregation Module
(FAM).

A. Bottleneck Residual Unit (BRU)

In Fig. 4, we show some classic residual units that widely used
in semantic segmentation. All of these modules are designed
for feature feature extraction. Among them, (a) and (b) use the
two-branch structure, one is responsible for local information ex-
traction, while the other is dedicated to expanding the receptive
field to obtain more contextual information. As for the pyramid
cascade module in (c), it uses a series of dilation convolutions to
gradually assemble multi-scale flexible representations. How-
ever, these models ignore the utilization of original features and
the fusion of features from different branches is insufficient. To
solve these problems, we proposed the Bottleneck Residual Unit
(BRU). As shown in Fig. 4, BRU is a three-branch module, the
left branch is responsible for extracting local and short-distance
feature information, the right branch is designed for enlarging
the receptive field to acquire long-distance feature information,
and the middle branch is dedicated to saving the input informa-
tion. Specifically, we absorb the advantages of the bottleneck,
which can not only ensure the model effect but also greatly
reduce the calculation budget. Meanwhile, the convolution fac-
torization strategy also be adopted, which means that a standard
2-dimensional convolution kernel K ×K is factored into two
1-dimensional convolution kernels, i.e., 1×K and K × 1 fol-
lowed by the batch normalization [32] and ReLU [33] opera-
tions. This strategy has been verified in many previous works
such as Inception-v3 [34], Xception [14], MobileNet [35], [36],
and ShuffleNet [37], [38], which can significantly reduce the
model parameters while maintaining the model performance.
Meanwhile, the use of depth-wise separable convolution is based
on the same reason and a 1× 1 point-wise convolution is used
to recover the final channel dependency. Dilation convolution
is applied for enlarging the receptive fields. The rule is that as

the network deepens, the dilation rate gradually becomes larger.
At the end of the module, the information from three branches
is merged together and a channel shuffle operation is applied
to enhance the module representation capability. The complete
operation of the module can be defined as follows:

xout = C1×1 (xin) , (1)

y1,1 = fCAM (C1×3 (C3×1 (xout))) , (2)

y1 = C1×3 (C3×1 (y1,1)) , (3)

y2,1 = fCAM (C1×3,r (C3×1,r (xout))) , (4)

y2 = C3×1,r (C1×3,r (y2,1)) , (5)

y3 = y1,1 + fCAM (xout) + y2,1, (6)

yout = fshuffle (fCAM (C1×1 (y1 + y2 + y3)) + xin) , (7)

where xin and yout mean the input and output of the BRU, re-
spectively. y1, y2, and y3 represent the output of the left, right,
and middle branch, respectively. The first half of the outputs are
represented by y1,1 and y2,1. Meanwhile, fCAM (·) denotes the
CAM operation, Cm×n denotes the convolutional layer with a
m× n convolution kernel, and fshuffle(·) is the channel shuf-
fle operation. The activation function and batch normalization
operations are omitted in the formulas.

B. Semantic Information Branch (SIB)

Recently, some modern approaches attempt to obtain suffi-
cient receptive fields and enough contextual information by ap-
plying atrous spatial pyramid pooling, large kernel, or dense
connection [10], [22], [24]. Although complex networks can
bring good accuracy, the complex network and heavy compu-
tational overhead will make them incompatible with real-time
requirements in real-world applications. The dual-branch struc-
ture network proposed by BiseNet [11] used ResNet [5] as the
backbone of the model to extract contextual information. The
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disadvantage is that it will take up a lot of GPU memory con-
sumption and the used ResNet [5] is pre-trained by the Ima-
geNet [39] which cannot be regarded as a end-to-end model.
Different from previous works, we build a deep Semantic Infor-
mation Branch (SIB) with our proposed BRU. This not only en-
sures that more semantic information can be captured and larger
receptive fields can be obtained, but also maintain the number
of parameters and calculations is very low. Different stages of
the convolutional neural networks have different representation
abilities: the shallow stages preserve abundant spatial informa-
tion, such as edges and corners but poor contextual information;
while the deep stages have enough semantic consistency but a
coarse prediction. Therefore, we set different dilation rates in
BRU at different stages of the branch.

1) Channel Attention Module (CAM): Since the channels con-
tain abundant feature information and interference noise, we
use the Channel Attention Module (CAM) in both BRU and
the semantic information branch to emphasize the features that
need to be highlighted. Meanwhile, this method can suppress
the interference noise thus facilitate feature extraction. Although
CBAM [40], Non-local [41], DANet [42], and CCNet [43] can
bring good results, they are potentially not suitable for real-time
segmentation tasks due to the complex calculation and a large
number of parameters. Therefore, we use the lightweight atten-
tion method described in [44]. CAM uses global average pooling
to obtain global contexts and generates an attention map to guide
the feature extraction with negligible computational cost, which
is a good way to improve the model performance. This method
has been generally explored in the tasks of detection, recogni-
tion, and segmentation. The process can be given as

Mc(X) = σ (Ck×k (fTrans (fAvgPool(X)))) , (8)

where Mc ∈ RC×1×1 is the channel attention map, X ∈
RC×H×W are the input features, Ck×k represents the standard
convolution operation with kernel size k, fAvgPool(·) represents
the average pooling operation, fTrans(·) denotes the compres-
sion and re-weighting operations, and σ is the Sigmoid function.

2) Downsampling Block: Inspired by the initial block in
ENet [7], we adopt it as our downsampling block. Through
the downsampling operation, we can achieve larger receptive
fields. However, too many downsampling operations will make
the boundary details loss too serious to be restored. This is not
conducive to feature extraction and utilization. Therefore, we
take a compromised strategy and only use the downsampling
module twice. That is, each time it is downsampled to 1/2 of
the input features using a downsampling block. So we end up
downsampling the image to 1/8 of the original given size.

C. Spatial Detail Branch (SDB)

Spatial information will be inevitably lost during the process-
ing of the semantic information branch. The reason is that the
extraction of deep-level semantic information and the preserva-
tion of shallow-level boundary information are a pair of con-
tradictory relationships. To solve this problem, we design the
spatial detail branch, which is actually a supplement to the de-
tailed information lost by the semantic information branch to

Fig. 5. The complete structure of (a) Detail Residual Module (DRM) and (b)
Feature Aggregation Module (FAM).

help the model achieve better accuracy in prediction process.
Different from SIB, we only use a simple and effective De-
tail Residual Module (DRM, Fig. 5(a)) and a Spatial Attention
Module (SAM) in this branch. Among them, DRM is specially
designed to supplement the details lost in the semantic branch,
which consists of three 3× 3 convolutional layers and one 1× 1
point-wise convolutional layer. In order to obtain more features,
we increase the number of channels of the second and third con-
volutional layers to 4 times (4 C) the original input. Finally, we
use a 1× 1 convolutional layer to reduce the number of chan-
nels to C again. This operation can remove redundant features
and extract effective features. In addition, to reduce the number
of parameters and computational cost, we replace the later two
3× 3 convolutional layers with the depth-wise separable con-
volution. Therefore, our DRM can extract rich shallow spatial
features with few parameters and computational cost.

3) Spatial Attention Module (SAM): Different from channel
attention focusing on “what”, spatial attention pays more atten-
tion to “where”. Therefore, SAM is used to extract and preserve
the shallow spatial information of the entire model. Specifically,
the practice of spatial attention is to apply both max-pooling
and average-pooling along the channel axis, then concatenate
and convolve them by a standard convolution to generate an ef-
fective feature description. The process of spatial attention [40]
can be described as follows:

Ms(X) = σ (Ck×k ([fAvgPool(X), fMaxPool(X)])) , (9)

where Ms ∈ R1×H×W is the desired spatial attention map, X ∈
RC×H×W are the input features, Ck×k represents the standard
convolutional layer with kernel size k, [] means concatenation
operation, fAvgPool(·) represents the average pooling operation,
fMaxPool(·) represents the max pooling operation, and σ is the
Sigmoid function.
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TABLE I
DETAILED ARCHITECTURAL CONFIGURATION OF FAST BILATERAL SYMMETRICAL NETWORK (FBSNET)

D. Fast Bilateral Symmetrical Network (FBSNet)

The whole network structure can be divided into three parts:
initial block, dual-branch backbone, and feature aggregation
module (the symmetry is mainly reflected in the resolution of
the encoding and decoding procedure in SIB). The complete
network structure can be found in Fig. 3 and the detailed archi-
tectural configuration can be found in Table I.

1) Initial Block: The initial block includes three 3× 3 convo-
lutional layers, where the stride of the first convolution is set to
2 to collect initial features. Different from Fast-SCNN [15], our
initial block performs downsampling operation only once, thus
the spatial information will be well preserved. In addition, in
typical two-branches networks [11], [12], they often branched
from the original input, where the feature information of the
two branches is completely independent. In this paper, the ini-
tial block is used as the dividing point of two branches so that the
semantic and spatial information are partially correlated, which
facilitates subsequent feature merging.

2) Feature Aggregation Module (FAM): How to effectively
integrate the information of the semantic branch and the spa-
tial branch is also the key issue of the two-branch structure.
Directly element-wise add or concatenate them are the most
widely used methods. However, these methods ignore the dif-
ferences between the features provided by the two branches. To
solve this problem, we used the strategy motivated by the lat-
est attention mechanism [53]. This method can not only capture
cross-channel information but also grab information about di-
rection and position perception. The most precious thing is that
it is not computation-intensive, which means fewer parameters
are in exchange for more gains, especially for dense predictions.
Specifically, the global average pooling is factorized into a pair
of 1D feature operations. Given an input X ∈ RC×H×W , which
is obtained by adding the two output features X1 ∈ RC×H×W ,
X2 ∈ RC×H×W from the two branches. Along the horizontal

and the vertical coordinates, we employ two spatial pooling ker-
nels with size (H , 1) and (1, W ) to encode the features, re-
spectively. After that, we can get two transformations, which
respectively merge features along the two spatial dimensions to
correspondingly generate attention maps from two directions.
One direction is responsible for capturing long-range dependen-
cies, and the other helps to retain precise positional information.
For the generated maps, we concatenate them and send them to a
shared 1× 1 convolutional layer for channel reduction yielding
a C/r × 1× (W +H) output. The procedures can be formu-
lated as follows:

F = C1×1

([
fH
AvgPool(X), fW

AvgPool(X)
])

, (10)

where [] represents the concatenation operation, fH
AvgPool(·) and

fW
AvgPool(·) represent the pooling operation along the H and W

directions. Batch normalization and non-linear activation func-
tion are also used before we split the intermediate features F
into two tensors, Fh ∈ RC/r×H and Fw ∈ RC/r×W , respec-
tively. After that, two 1× 1 convolutional layers Th and Tw are
applied to restore Fh and Fw to have the same channel numbers
as the input X . After passing through two Sigmoid functions,
we expand the two outputs and take them as attention weights.
The procedures can be formulated as follows:

Kh = δ
(
Th

(
Fh

))
, (11)

Kw = δ (Tw (Fw)) . (12)

Finally, the output Y of the FAM can be calculated as:

Y = (X1 +X2)×Kh ×Kw. (13)

Through this method, the features of the two branches can be
fully integrated, and the feature information can be adaptively
highlighted under the channel and spatial directions simultane-
ously. The complete structure of FAM is provided in Fig. 5(b).
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TABLE II
ABLATION STUDIES ON CAMVID. SIB: SEMANTIC INFORMATION BRANCH, SDB: SPATIAL DETAIL BRANCH, CAM: CHANNEL ATTENTION MODULE,

FAM: FEATURE AGGREGATION MODULE, SAM: SPATIAL ATTENTION MODULE

IV. EXPERIMENTS

In this section, we will introduce the benchmarks datasets
we used, the parameter settings during training, the ablation
experiments, as well as the comparison with other state-of-the-
art image semantic segmentation methods to fully illustrate the
advantages of our FBSNet.

A. Datasets

1) Cityscapes: The Cityscapes dataset records street scenes
in 50 different European cities with the size of 2048× 1024,
containing 5,000 finely annotated images and 19,998 coarsely
annotated images. The dataset involves 30 categories, and we
only employ 19 of them with fine-annotated images for train-
ing and testing, which is divided into three parts: 2975 samples
for training, 500 samples for validation, and 1525 samples for
testing.

2) CamVid: The CamVid dataset is another vehicle applica-
tions dataset collected from video sequences. It has 11 categories
and 701 finely annotated images that are split into 367 training
samples, 101 validation samples, and 233 testing samples with
the same size of 960× 720.

B. Implementation Details

We implement our model with the PyTorch framework and
all our experiments are performed on a single RTX 2080 Ti
GPU. For Cityscapes, we train our model from scratch by uti-
lizing cross-entropy loss function with OHEM, as well as the
stochastic gradient descent (SGD) method with momentum 0.9
and the related weight decay 1× 10−4. As for the CamVid
dataset, due to different input resolutions, we adapt the op-
timization method to Adam with momentum 0.9 and related
weight decay 2× 10−4. At the same time, to stabilize the train-
ing, the ‘poly’ policy is also utilized for the learning rate strat-
egy. The initial learning rate is configured as 4.5× 10−2 and
1× 10−3 for Cityscapes and CamVid, respectively. The learn-
ing rate is generally related to the iteration and can be calculated
as lrinitial × (1− iteration

max_iteration )
0.9. Both datasets are trained

for 1000 epochs with a batch size of 4 for Cityscapes and 6 for
CamVid.

C. Ablation Studies

The main purpose of the ablation studies conducted on the
CamVid test set is to verify the performance improvement of
each module in the entire network. Similar to the controlled
variable methods in physics experiments, we add modules step
by step to see their impact on the prediction results, the number
of parameters, and the amount of computation. All results are
provided in Table II.

1) CAM: As we can observe from the first two lines of the data
field in Table II, the prediction results of the network are worse
without using CAM. In other words, the CAM can provide a
0.6% improvement in accuracy with almost no increase in the
number of parameters or computation. This experiment fully
proves the effectiveness of CAM.

2) FAM: Feature fusion methods have always been the key re-
search topic for multi-semantic aggregation. Among them, the
“Add” and “Concatenate” operations are the most widely used
methods. Therefore, we provide the comparison of “Add,” “Con-
catenate,” and FAM in Table II. According to the table, we can
clearly observe that our FAM achieves the best performance
of 68.58%, which is 0.71% and 0.32% better than that of the
“Add” and “Concatenate” operations, respectively. Compared
with the “Add” operation, FAM only increases negligible pa-
rameters (0.000556 M) and FLOPs (0.0003 G). This is entirely
acceptable. Moreover, compared with the “Concatenate” oper-
ation, FAM achieves better results with fewer parameters and
FLOPs. This is a big breakthrough that can effectively improve
the performance of the model without increasing the complexity
of the model. Comprehensive consideration of these indicators
can prove the effectiveness of our proposed FAM.

3) SAM: This part is to verify the benefits of SAM in enhanc-
ing spatial information. According to Table II, we can see that
SAM can take up only 0.01 G of computation and very few pa-
rameters, resulting in a performance improvement from 68.58%
to 68.86%.

As can be seen from the above three ablation experiments,
each module plays a unique role in the network. It can also
be found that due to the addition of SDB, the computation
of the whole network is increased by nearly a half while the
performance is improved from 66.72% to 67.87%. The reason
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TABLE III
COMPARISON WITH STATE-OF-THE-ARTS IMAGE SEMANTIC SEGMENTATION METHODS ON THE CITYSCAPES TEST DATASET. ALTHOUGH OUR FBSNET DID NOT

ACHIEVE THE BEST RESULTS ON MIOU, THE MODEL ACHIEVES COMPETITIVE RESULTS ON THE NUMBER OF PARAMETERS, FLOPS, AND FPS. IN GENERAL,
FSBNET ACHIEVES THE BEST BALANCE BETWEEN MODEL PERFORMANCE, MODEL SIZE, AND INFERENCE TIME

TABLE IV
PER-CLASS IOU (%) RESULTS ON THE CITYSCAPES TEST SET. “AVG” REPRESENTS THE AVERAGE RESULTS OF ALL THESE CATEGORIES. OBVIOUSLY, OUR

FBSNET ACHIEVES THE BEST MIOU RESULTS

why many methods are reluctant to use it is that their semantic
branches are already so computationally heavy that there is no
room left to consider the boundary detail information. On the
contrary, due to the lightweight structure of our SIB, we can
integrate the SIB and SDB to achieve promising performance.

D. Comparison With SOTA Methods

During the training phase, we crop the size of original im-
ages and corresponding labels to 512× 1024 for Cityscapes and
480× 360 for CamVid as input to reduce the computational con-
sumption and the GPU memory occupation. For testing, we use
the original size of the datasets for inference. For a fair com-
parison, we do not employ any other post-process operations,
like conditional random field (CRF). The evaluation indicators
are mainly from four aspects: the mean intersection over union

(mIoU), the number of parameters, the number of float-point
operations (FLOPs), and the inference speed (FPS).

1) Results on Cityscapes: In Table III, we provide a quan-
titative comparison with other state-of-the-art image semantic
segmentation methods on the Cityscapes test dataset. More-
over, we provide the per-class IoU (%) results on the Cityscapes
in Table IV. According to these results, we can observe that
when encountered with fewer parameters, our network can well
ensure better accuracy and faster inference speed. The mod-
els with the same number of parameters as our method do not
have the same effects, and the models with the same effects will
need more parameters than ours. Specifically, from the perspec-
tive of “Parameters,” ENet [7], ESPNet [8], and NDNet [46]
have fewer parameters but their segmentation accuracy is 5.6%
lower than our FBSNet, which is a big gap in the segmentation
field. This is in the case that our number of parameters is only
0.26 M more than theirs. From the perspective of “FLOPs,” the
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Fig. 6. Sample visual results on the Cityscapes validation set. From left to right: input samples, ground-truth references, segmentation outputs of the proposed
FBSNet, LEDNet [28], DABNet [30], ERFNet [26], NDNet [46], and ENet [7]. The region in the yellow dotted box can intuitively highlight the superiority of our
method over others.

computation cost of ESPNet-v2 [47] is 7 G smaller than ours at
the cost of 4.7% segmentation performance penalty. From the
perspective of “Speed,” our method is in a position above the
medium level at 90 FPS. While in terms of “mIoU,” there are
several methods have higher performance than our method, such
as DFANet [13] and BiseNet-v2 [12]. Indeed, DFANet [13] is an
outstanding model, which achieves slightly better mIoU result
than our FBSNet. However, we should not ignore that the num-
ber of parameters of DFANet is 7.8 M (M= Million), while the
number of ours model is 0.62 M, which is only 1/12 of DFANet.
Such a large-scale DFANet is difficult to be promoted in practi-
cal applications. As for the inference speed, the results of the two
models are very close (DFANet: 100 vs. FBSNet: 90). The reason
why FBSNet has fewer parameters but slower inference speed
is that the attention mechanisms are used in FBSNet. These at-
tention mechanisms will bring some computational overhead,
resulting in slower inference speed. Fortunately, this effect is
acceptable. To better compare these models, we provide the
Accuracy-Speed-Parameters comparisons in Fig. 1. Obviously,
our FBSNet achieves the best trade-off between the accuracy,
model size, and inference speed of the model. Moreover, we pro-
vide the visual comparisons with LEDNet [28], DABNet [30],
ERFNet [26], NDNet [46], and ENet [7] in Fig. 6. Through a
horizontal comparison of the segmentation results, we can also
qualitatively see the advantages of our proposed method. The
yellow dotted boxes in the ground truth distinctly depict that our
method is obviously superior to other methods.

2) Results on CamVid: To further verify the performance of
FBSNet, we also provide a quantitative comparison with other
methods on the CamVid test dataset in Table V. According to the
table, we can observe that (a) FBSNet achieves the second-best
segmentation results, which is slightly worse than MSCFNet.
However, it should be noticed that FBSNet requires only half
the amount of parameters and FLOPs of MSCFNet, and its in-
ference speed is twice that of MSCFNet; (b) Compared with
methods of similar model size, the performance of FBSNet
has been significantly improved; (c) Compared with other large
models, FBSNet achieves better results with fewer parameters.

TABLE V
COMPARISON WITH STATE-OF-THE-ARTS IMAGE SEMANTIC SEGMENTATION

METHODS ON THE CAMVID TEST SET

Fig. 7. Visual comparison on CamVid. From left to right: input samples,
ground-truth references, segmentation outputs of the proposed FBSNet, DAB-
Net [30], DFANet [13], NDNet [46], and ENet [7]. The region in the yellow
dotted box can intuitively highlight the superiority of our method over others.

Similarly, we provide the visual comparison results of these
methods on the CamVid test dataset in Fig. 7. Obviously, our FB-
SNet still achieves the best segmentation results. All the above
experiments have fully proved the effectiveness and excellence
of FBSNet, which strikes a good balance between accuracy and
efficiency.
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V. CONCLUSION

In this paper, we proposed a Fast Bilateral Symmetrical Net-
work (FBSNet) for real-time image semantic segmentation.
Compared to some top-accurate methods struggling for complex
architecture and extreme lightweight networks aiming at com-
pressing convolutional layers, our solution mainly focuses on
getting a relatively good balance between the accuracy, model
size, and inference speed with elaborately designed modules.
Especially, our proposed Bottleneck Residual Unit (BRU) can
enlarge the receptive field to distill significant semantic informa-
tion comprehensively. Our extensive investigations have shown
that spatial information is critical to recovering the resolution
during the decoder process. Therefore, we designed a symmet-
rical encoder-decoder model, which is composed of a Semantic
Information Branch (SIB) and a Spatial Detail Branch (SDB).
These two branches can extract deep semantic information and
preserve shallow boundary details, respectively. In summary,
our model, which is only 0.62 M, can process a 512× 1024 in-
put size and achieves 70.9% at a speed of 90 FPS on Cityscapes
test data with a single RTX 2080Ti GPU. Extensive experiments
have revealed that our proposed FBSNet achieved a good bal-
ance between the accuracy and efficiency of the model.
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