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Abstract—Representation learning steered robust face image
super-resolution (FSR) methods have attracted extensive attention
in the past few decades. Most previous methods were devoted
to exploiting the local position patches in the training set for
FSR. However, they usually overlooked the sufficient usage of the
contextual information around the testing patches, which are useful
for stable representation learning. In this article, we attempt to
utilize the context-patch around the testing patch and propose
a method named context-patch representation learning with
adaptive neighbor embedding (CRL-ANE) for FSR. On one hand,
we simultaneously use the testing position patch and its adjacent
ones for stable representation weight learning. This contextual
information can compensate for recovering missing details in the
target patch. On the other hand, for each input patch set, due
to its inherent facial structural properties, we design an adaptive
neighbor embedding strategy to elaborately and adaptively choose
primary candidates for more accurate reconstruction. These two
improvements enable the proposed method to achieve better SR
performance than some of the other methods. Qualitative and
quantitative experiments on some benchmarks have validated the
superiority of the proposed method over some state-of-the-art
methods.

Index Terms—Adaptive neighbor embedding, contextual
information, face super-resolution, representation learning.
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1. INTRODUCTION

HE aim of image super-resolution (SR) is to reconstruct
T a high-quality image with more details from its observed
low-quality image (s). With the aid of the internet, large-scale
data can be collected to train robust models. However, learn-
ing the effective potential priors for more robust and accu-
rate image reconstruction is still a crucial challenge. Numer-
ous algorithms have been designed for general image SR prob-
lems [1]-[3] and domain-specific SR problems [4], [5]. Face
image super-resolution (FSR), as a specific case of general im-
age SR, is a technique to acquire high-resolution (HR) facial
images from observed low-resolution (LR) facial images [6].
As the preprocessing step, it has been widely used in various
face-related applications, such as face tracking, face detection,
face editing, face reconstruction, and face recognition [7]-[9].

In previous decades, tremendous achievements have been
made in the SR solution of LR facial images. Previous models
mainly focused on the global faces. Some representative mani-
fold learning methods are used to derive the HR facial images
based on the correlation mapping learned from the LR/HR face
pairs [10]. Liu et al. [11] attempted to model the relationship
between LR/HR face images using a non-parametric Markov
random field model to further compensate for the local details.
Jia et al. [12] designed a global image-based tensor to describe
the mappings across multiple modalities. A local patch-based
multi-resolution tensor is utilized to generate HR facial details.
The performance of these methods still needs to be improved
when the number of the training examples is small or the ob-
served LR images possess pose or noise variations.

In recent years, the part-based methods have received at-
tractive attention since the local patch-steered algorithms could
maintain well the facial details well. Baker ef al. [13] suggested
that reconstruction based on the image patches can improve the
SR performance. Following this idea, Yang et al. [14] extracted
patches from the given HR images and then trained a couple of
LR and HR dictionaries to super-resolve the desired HR images.
Jiang et al. [15] applied smooth regression to learn the relation-
ship between HR and LR patches with the assistance of the local
structure prior. Zeng et al. [16] generated a better training set
to enhance the quality of the FSR. Jiang et al. [17] further ex-
ploited the contextual information and designed a thresholding
locality-constrained representation scheme.
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Although the above approaches have attained promising per-
formances on FSR, there are still some drawbacks that need to
be addressed. On one hand, only the context-patches around the
training patch are used, and the contextual information around
the testing patch is not well-utilized. On the other hand, previous
methods exploited the fixed-size training patches for representa-
tion learning, ignoring the inherent structural properties included
in the faces. To dispose of the aforementioned issues, we pro-
pose an approach called context-patch representation learning
with adaptive neighbor embedding (CRL-ANE) for FSR in this
paper. In particular, several contributions in this work are made:

® To avoid the tedious and ambiguous parameter search, based

on the local inherent facial structural properties, we design
a parameter-free adaptive neighbor embedding solution to
adaptively select primary candidates for more accurate and
stable reconstruction.

® To make full use of the context-patches around the testing

patch for stable representation weight learning, we design
an effective matrix set steered learning scheme to directly
adopt the original form of the contextual patch for robust
representation learning. Through our experiments, we find
that these context-patches can compensate for the recovery
of facial details when the observed LR inputs contain noise.

The rest of this study is as follows. We describe two categories
of the related works in Section II. Our motivations are given
in detail in Section III. Our devised solution is presented in
Section IV. The experimental evaluations and discussions are
provided in Section V. In Section VI, we give the conclusion of
our work.

II. RELEVANT WORK

We simply mention two categories of work related to the FSR
problem in this section. The conventional methods are mainly
based on the statistical geometric structure of the faces. To super-
resolve HR face images with more details, researchers have fo-
cused on two kinds of approaches: mapping function-based ap-
proaches and prior knowledge-based approaches.

Mapping function-based approaches are devoted to inves-
tigating new models to find the inherent transformation between
LR/HR face pairs. Ma et al. [18] designed the least square rep-
resentation (LSR)-steered approach by exploiting the position
constraint to restrain the reconstruction process. Jiang et al. [19]
designed a locality constrained representation (LcR) solution
to simultaneously achieve locality and sparsity in the represen-
tation learning process. Later, Liu ef al. [20] introduced this
idea into the quaternion space to hallucinate color face images.
Shi et al. [21] proposed to train a series of adaptive kernel regres-
sion functions for high-frequency information prediction. Re-
cently, deep convolutional neural network (CNN) based models
have been widely used to learn end-to-end mapping functions.
Yu and Porikli [22] introduced a transformative autoencoder to
reconstruct very LR unaligned and noisy faces. Cao et al. [23]
presented an attention-aware framework, which performed ef-
fective facial part enhancement via a deep reinforcement learn-
ing scheme. Song et al. [24] designed a two-step FSR network,
which first used the deep models to generate coarse HR faces and
then enhanced the facial details via facial component matching.
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Zhang et al. [25] proposed a copy and paste generative adver-
sarial network (GAN) to super-resolve LR faces under normal
illumination conditions.

Prior knowledge-based approaches mainly focus on exist-
ing reasonable priors for guiding the design of regularization
terms [26]-[29]. To resolve the unstable solution of LSR [18],
Jung et al. [30] adaptively selected primal training patches for
efficient reconstruction by introducing the sparsity constraint.
Wang et al. [31] presented a weighted adaptive sparse reg-
ularization method for accurate, stable, and robust face im-
age reconstruction. Jiang et al. [32] assigned different model
parameters for different patches based on the facial structure
prior. Rajput er al. [33] presented an iterative sparsity and
locality-constrained representation approach for robust FSR.
Liu et al. [34] proposed a robust locality-constrained bi-layer
representation (RLcBR) method to perform FSR and noise re-
moval simultaneously. Chen et al. [35], [36] formulated the
FSR procedure as a contextual joint representation model to
restore HR facial images under noisy LR scenarios. For deep
CNN-based methods, facial structural priors are usually intro-
duced into the model for better performance. Zhu et al. [37]
presented a gated deep bi-network to recover the textural details
by exploiting the facial spatial priors. Chen er al. [38] intro-
duced the facial parsing and landmark maps into the training
phase to super-resolve better results. Yu et al. [39] estimated the
facial component heatmaps in the network to guide the super-
resolution procedure. Recently, they further considered the facial
attribute priors and developed an attribute embedding method to
hallucinate very low-quality faces [40]. Zhang et al. [41] utilized
the facial identity information and presented a super-identity
convolutional neural network for FSR. Hsu et al. [42] leveraged
the similar prior for the identity-preserving FSR task. Recently,
Ma et al. [43] proposed an FSR method with iterative collabo-
ration between facial image recovery and landmark estimation.

In comparison with those previous methods, we elaborately
exploit the central position patch and its adjacent patches in
the input for more stable representation weight learning. Mean-
while, by taking the inherent facial structural properties into
consideration, we design an adaptive neighbor embedding strat-
egy to adaptively choose reliable candidates in the training set
for more accurate reconstruction. These two considerations pro-
mote the context-patch representation capability, thus making
the proposed method achieve better recovery performance.

III. MOTIVATION

Our approach belongs to the prior knowledge steered ones.
In comparison with the existing approaches, in our solution, we
propose to fully utilize the adaptive neighbor structure and the
contextual information for robust representation learning. We
argue that the key to a robust FSR model lies in the robust and
effective representation learning with the help of the horizontal
neighbors and vertical contextual information. We provide the
reasons for the above observations as follows:

e [t is known that human faces usually contain abundant struc-
ture priors, which can make a great contribution to the fi-
nal face reconstruction task. For instance, the forehead and
cheeks are smooth, while the eyes, mouth, and nose may
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Fig.2. Representation weights of the clear patch, the occluded patch, and the
related context-patch using the LcR method [19], respectively.

contain rich textural information. Generally, in conven-
tional neighbor embedding-based methods, an appropriate
training size should be preset to simultaneously capture the
facial details and ease the computational costs. Neverthe-
less, it is usually unrealistic to allot a uniform neighbor
for distinct facial parts. In Fig. 1, we give a plot of the
peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) [44] values versus different training sizes with dif-
ferent position patches. It was found that different position
patches achieve their best reconstruction performance with
different training sizes. This phenomenon motivates us to
design an adaptive neighbor embedding scheme for each
patch to obtain its best reconstruction performance.

® The key of the learning steered methods is the desired repre-
sentation weights of the acquired patch over a given train-
ing set. When the observed patch is occluded, then the com-
putation of the optimal representation weights becomes in-
tractable, which leads to unsatisfactory facial reconstruc-
tion performance. Fortunately, if we resort to its contextual
patches, which are visible and may have a similar mani-
fold structure to that of its central patch, it is likely to attain
more accurate representation weights for more accurate re-
construction. We provide an example in Fig. 2. With the
help of the facial contextual counterparts, the effect of the
occlusion in the local central patch can be resolved to some
extent.
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TABLE I
NOTATIONS USED IN THIS ARTICLE

Symbol Meaning

zi, xl, the i-th patch of a face image

Sg, an the contextual patch sets

Je, Jt the constraint terms

Pti, GZ the cascaded patch sets

Ai, B,i the diagonal block matrix

xn Z the auxiliary Lagrange multipliers
T, € the parameters

Based on the above observations, we introduce the contex-
tual prior and the adaptive neighbor embedding scheme into our
proposed model to simultaneously mitigate the computational
burden and provide complementary information for robust rep-
resentation learning.

IV. PROPOSED METHOD
A. Main Model

Our notations are summarized in Table L. In learning steered
face hallucination approaches, pairs of LR and HR patches form
the training set. Suppose we have M LR/HR face pairs for
training, denotedas X = {X,,}M_ andY = {V,,,}*_,, where
X,, and Y,,, represent the paired LR/HR training examples, re-
spectively. The main goal of the face image super-resolution is
to hallucinate the potential high-quality candidate Y, from its
low-quality observed X; by using the LR and HR training set,
(X, Yo}

For patch-based methods, all the paired faces in the training
set are divided into lapped small patches, denoted as {xf }M_,
and {y’ }M_,, where 2 and 3! denote the i-th patch of the
m-th LR/HR training face, respectively. For the LR testing face
image X, its i-th patch is represented as ;. Our goal is to obtain
the optimal representation weights w?, of 2% over the LR training
patches {z¢ }M_,.

As in [17], we utilize all the contextual candidates within a
reliable window treated position p as the center. For the input
patch xi, its contextual patches are denoted as x;’“, where a =
1,2,...,c. Here, c denotes the number of contextual patches
within a window and can be acquired by the step size (ss), the
patch size (ps), and the window size (ws): ¢ = (1 + %)2_
As in [17], we also fix the step size as 2 in this paper. Then, the
contextual patch set S¢ of ¢ can be denoted as follows:

2] M

The contextual patch set of the training faces can be con-
structed in the same manner. For the ¢-th patch of the m-th
training face x , its contextual patch set S’ can be obtained
as follows:

i i1 4,2
S; = [xt A

an = [a:i’l xl? ...,xi’c] . 2)

m m ) m
Considering that the contextual patches can provide comple-

mentary information for discriminative representation learning,
especially when the LR input encounters noise, these contextual
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patches are represented jointly by sharing the same representa-
tion weights as follows:

c M
Je=> |zt = > whahe| 3)
a=1 m=1 lp
where w},, is the target optimal representation weights, || - ||;,

denotes the /,-norm of a matrix or a vector.

In addition to the above contextual fidelity term, the central
patch within a window should also be represented accurately.
As aresult, we have the following term:

Jo= oy = Y whal,| 4)
lIJ

By considering the contextual constraint term .J, and central
representation term .J; together, we use the minimization func-
tion to obtain the optimal weights w® as follows:

min {J; + Jo + 72 (w') }, S

where the third term Q(w®) denotes the prior about the combi-
nation weights, 7 is the regularization parameter.

B. Adaptive Neighbor Embedding

In the previous section, the whole training set is used to rep-
resent the given patch. However, it is worth noting that when
the training sample size is large, the computational cost of func-
tion (5) increases dramatically. The previous popular methods
usually selected K nearest neighbors to reduce the computa-
tional complexity. Nevertheless, it is usually unreasonable and
intractable to preset a reliable value of K in real-world applica-
tions. Additionally, it is unrealistic to designate the uniform A
to individual distinct facial parts.

To avoid the difficulty of conducting parameter selection, we
advise a parameter-free adaptive neighbor search strategy here
to adaptively embed similar patches for better reconstruction.
Let N(z%) represent the set of neighbors of the input patch i,
then we define N (z%) as follows:

M
N (z}) = {xg| if d (x},23) < i Zld(xt,xm)}, (6)

m=

where b=1,...,M, d(zi,2}) =z -2 |3, and
LM d(x 2t s actually the mean of all d(xf,a?).
For each input LR patch, our strategy could adaptively select
primary patches from the training set for more accurate and
efficient reconstruction.

An example is shown in Fig. 3, from which we can observe
that individual faces have distinct neighbor maps. It was also
found that the forehead and cheek regions have a large number
of neighbors, while nose, eyes, mouth, and face contours have a
small number of neighbors. This further validates that different
facial regions have a distinct number of neighbors. In [32], the
authors also proposed an adaptive parameter setting strategy.
The differences are twofold. On one hand, the method in [32]
first performed parameter map leaning in a training set, and then
used this learned map for HR face prediction. In our method, we
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Fig. 3. Visualization of the adaptively embedded neighbors.

directly perform a neighbor search in the testing phase. On the
other hand, the method in [32] assigned the same parameter for
the patches from the same position of a different subject, while
we relaxed this consumption and made these patches adaptively
choose their neighbors.

C. Vector Set-Based CRL

Similar to previous methods, in this part, we use the vector
form to elaborate each patch. In this case, the contextual patch
setin (1) and (2) can be denoted as S¢ = [z0! 202, .. 20 e
R and S! = [xhL b2 . xhe] € MIXC, where d is the
measure of the patch. By considering the aforementioned adap-
tive neighbor search strategy simultaneously, (3) and (4) can be
rewritten as follows:

2

i i
Ty — E WrLk|| >

k:EN(w};)

Jt:

2

2
c

i,a
Ty —

a=1

T

w}, x}ca ) @)

keN (x}) )

Researchers [19], [34] have made extensive efforts on explor-
ing effective constraints and advised that the locality constraint is
superior to the sparsity constraint in exposing the inherent struc-
ture of the nonlinear manifold. To make full use of the merits of
both locality and sparsity, in this paper, we wish to incorporate
the locality and sparsity constraint into the priority of w?. (5)
can be rewritten as follows:

K 2
min [|P; — » w,GL|| +71|Dw'||,, (8)
i |- 3 uih| o puf]
where the index k is in the set N (z%), D is a diagonal weight
matrix with elements d, = ||Pf — GL|j3, k=1,2,...,K (K
denotes the length of set N (z%)). The cascaded testing patch set
P} is denoted as follows:

Pi = [z bt o mt} )
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Algorithm 1: The algorithm for Solving (11).

Algorithm 2: Optimizing (19) via ADMM.

Input: The i-th cascading contextual patch set P from an
LR observed face, the corresponding adaptive selected
neighbor set G = [G1, G, . .., G k] from the LR training
set.

Parameter: The locality parameters 7, and the maximal
iteration steps max_num.

Initialize: 2(*) = w(® =10 = 0.

while t < max_num do

1. Update w by (14);
2. Update z by (15);
3. Update Lagrange multiplier A by (16);
4. t<+—t+1.
end while
Output: The desired representation weight vector w.

The cascaded training patch set G is similarly denoted as
follows:

Gi = [x};;legscz’?; . ,mff} . (10)

In the next text, we detail the optimization procedure of func-
tion (8). For simplicity, we leave out the indexes ¢ and ¢. Directly
solving (8) is difficult, and we transform it into the following

equivalent formulation:

min || P — Guw|2+7|z|l,, st. z=Dw, (1)
where w is the target optimal representation weight vector con-
sisting of K values of wy, and G is the matrix cascaded by K
vectors of G, k =1,2,..., K. The alternating minimization
method can be efficiently used to solve the above multiple vari-
able optimization problem [45]. The corresponding augmented
Lagrange function of (11) is denoted as follows:

L(w,z, 1) = || P — GwH% + 7]12|I1 +AT(Z — Dw)

I
+ 5 Iz = Dwll3, (12)
where A denotes the auxiliary Lagrange multiplier, ;o > 0 is a
positive penalty constant. Then w and z can be optimized alter-
natively.

Updating w: By fixing others, the optimal solution of w can
be attained as follows:

w1 = argmin L(w, 2, A(t))

w

= argmin||P — Gull} + e — Duwl3,  (13)

where e = 2() 4+ A(*) /1. By considering the derivative of the
function L related to the variable w, and equating the result to
zero, we can attain the following:

Wt — (QGTG—FNDTD)A (2GTP—|—,MDT€(t)) . (14)

Updating z: By fixing others and using the soft-thresholding
operator [46], the optimal solution of z can be attained as fol-
lows:

Input: The i-th LR testing diagonal block matrix A, the
corresponding adaptive selected training diagonal block
matrix set B = [By, Ba, ..., Bk].

Parameter: The model parameter 7, and the parameter € in
the termination condition.

Initialize: £(©) = Z(0) = 0, w(®) = 2(0) = 4(0) =,

while not converged do

1. Update E by (22);

Update w by (24);

Update z by (25);

Update Lagrange multipliers v and Z by (26);

Check the convergence condition by (27);

6. t<—t+ 1
end while
Output: The desired representation weight vector w.

Nk w

2+ = argmin L(w"™h 2, )\(t))
z

. (Dw@H) ~ 1,\@))
1

2

T 1
= argmin —||z]j; + =
EAT) 2 9

1
— shrink (Dw(t“) — 0, T) , (15)

TR

where the operator shrink is defined as shrink(x, o) = sign(z) -
max(|z| — 0,0) in a scalar way.

Updating 1: Once z(#+1) and w*+1) are updated, the assisted
Lagrange multiplier A can be updated as follows:

A — @) 4 12 (Z(t'H) — Dw(t+1)> . (16)

The detailed process to solve (11) is listed in Algorithm 1.

D. Matrix Set-Based CRL

Many pioneering works [28], [47] have discussed that the
nuclear norm-based constraint can be more appropriate for
maintaining the inherent geometry of the reconstruction er-
ror. In contrast to the foregoing subsection where each con-
textual patch is reshaped as a vector, here we directly uti-
lize the 2D form of the contextual patch for robust repre-
sentation learning. Then the patch set in (1) and (2) can
be denoted as S! = [z0'!, 2b?, ...zl € MP*9*¢ and S =
[zl 22 . xhe] € MP*9*¢ where p and g represent the mea-
sure of the observed patch. In this case, (3) and (4) can be rewrit-

ten as follows:

— || Qi
Jr = ||y — E wixLl

keN (z}) X
¢ . .
Jo = Z = wpy|l (17)
a=1 keN (x}) .
where || - || denotes the nuclear norm of a matrix.
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By some explicit algebraic steps, (5) can be formulated as
follows:

mi}lllAi =B, + 7 [ D], (18)

Where (w') = wi B} + wiB + ... + wi B,

is the diagonal block matrix of xi,

B = is the diagonal block matrix of zi,

k=13, K

The alternating direction method of multipliers (ADMM) can
be utilized to tackle the previous optimization task. By intro-
ducing some auxiliary variables, we transform (18) into the next

formulation as follows:
ming,w,. [ B« + 7]

. (19)
s.t.A— B(w) = E,z=Duw

Here, for the sake of description, we also omit the indexes ¢, k
and t. The augmented Lagrange function of (19) can be written
as follows:

L(w,z,n, 2, E) = ||Ell. + 7 ||z]l, + (2, A = B(w) - E)

I
+ (1,2 = Dw) + 5 (A = B(w) = B[ + || = Dwl[3),

(20)
where (-,-) denotes the inner product, both 1 and Z are the
auxiliary Lagrange multipliers, and p > 0 is a positive penalty
constant. Thus, F, w and z can be optimized iteratively.

Updating I: By fixing the others, the optimal £ can be gained
by optimizing the following problem:

E+D — arg mbin L(w(t), Z(t),n(t), Z(t), E)

1 1 ,
= argmin ;HE||*+§||E*C||F, 2D
where C' = A — B(w®) + Z® /. Tts solution is
EM) —UT.[Q)V, (22)
m

where (U, Q,VT) = svd(C), T%[Q]

%)}1Sj§r), q1, - .-, g denotes the positive singular values, and
r denotes the rank of matrix Q.

Updating w: By fixing the others, the optimal solution of w
can be obtained as follows:

20 0 70 gDy

= diag({max(0,q; -

w1 = argmin L(w

= argmin ||b(t+1) — Hw||% + Hg(t) — Dw||§, (23)

where H = [vec(By),vec(By), ..., vec(Bg)], b1 = vec
(A— B+ 4 ﬁZ(t)) and g = 2 ¢ %n(t). The closed so-
lution of w is given as follows:

wtV) = (HTH + DTD)” (HTb(t“) +DTg(t)). (24)
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Fig. 4.  Flowchart of our algorithm. Given an LR patch, we first choose its
adjacent patches as the input contextual patch set, which are marked by red
boxes. Then, we try to adaptively select its similar neighbors (green patch set)
to perform representation learning and attain the optimal representation weights
w. The required HR patch can be obtained by using the same representation
weights over the relevant HR patches.

Input LR face

Updating z: By fixing others, z can be updated as follows:

2 = argmin L(w®Y | 2,9, 20 pi+D)

1 1 2
= argminz||z||1 + ||z — (Dw(“‘l) _ _n(t)>
z 2 I )
1
= shrink <Dw(t+1) — =W, Z) 7 (25)
T

where the operator shrink has the same definition as that in the
previous section.

Updating Z and n: Once w1 z(t+1) "and E¢+D are ac-
quired, the aided multipliers,  and Z can be updated as follows:

D = p® 4 (Z<t+1) _ Dw(t+l)) 7

Z(t+1) — Z(t) + i (A _ B(w(t+l)) _ E(t-‘rl)) . (26)

In this work, we use the following termination conditions:

Hz(tJrl) -~ Dw(t+1)H <=

HA ~ B(w(ttD) — pt+Y) H <= 27)

where € is a given termination condition tolerance.

The detailed procedure for solving (19) is summarized in the
form of Algorithm 2.

After obtaining the optimal representation weight w’ of the
i-th patch, we would gain the desired HR patch by ¢ =
> wiyk. The target HR face Y, can be yielded by integrating all
the target HR patches 3’ and averaging overlapped pixel values
in terms of their respective positions. The whole architecture of
our method is displayed in Fig. 4.
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Fig. 5. Some example faces from the FEI face database [48]. Each column
denotes the faces from one person.

TABLE I
ABLATION STUDY RESULTS OF EACH MODULE IN OUR METHOD

Models | VCRL-NE | VPRL-ANE | VCRL-ANE | MCRL-ANE
PSNR (dB) | 25.8896 25.7947 26.1050 26.3431
SSIM 0.8119 0.8021 0.8219 0.8284

V. EXPERIMENTS AND DISCUSSIONS
A. Dataset Description

In this part, we perform evaluations on the publicly available
FEI face dataset [48], which collects 400 frontal faces from 200
subjects. Therefore, each subject posses two examples: one with
a smiling expression and the other with a neutral expression.
All the face areas are cropped to have a size of 120 x 100. We
randomly select 360 faces for training and the remaining 40 faces
for testing. The HR faces are smoothed (with a window size of
4 x 4) and then downsampled by a scale factor of 4 to generate
the corresponding LR counterparts with a size of 30 x 25. The
size of the patch and the overlap among adjacent patches in both
the raining and testing faces are 12 x 12 pixels and 4 pixels,
respectively. Some face examples from the FEI face database
are depicted in Fig. 5.

B. Ablation Study

We evaluate the effectiveness of each module in our method.
Our method based on the vector and matrix patch is denoted
as VCRL-ANE and MCRL-ANE, respectively. Compared to
VCRL-ANE, VPRL-ANE replaces the context-patch with the
position-patch (i.e., set the window size to 12), and VCRL-NE
utilizes the selected training patches for representation learn-
ing. The compared results in terms of PSNR (dB) and SSIM are
given in Table II. It can be seen that VCRL-ANE outperforms
VPRL-ANE, indicating that the contextual information indeed
compensates for the recovery of facial details in the target patch.
The adaptive neighbor embedding strategy is also important in
our method since VCRL-ANE obtains a better performance than
VCRL-NE, which reveals that the adaptive neighbor selection
strategy can lead to more stable and accurate reconstruction.
The gain of MCRL-ANE over VCRL-ANE also validates the
effectiveness of matrix regression used in our method.
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Fig. 6. The performance of our MCRL-ANE method with various indexes of
7 in terms of the average PSNR (dB) and SSIM values.
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Fig. 7. The performance of our MCRL-ANE method with various indexes of
ws in terms of the average PSNR (dB) and SSIM values.

C. Parameter Discussions

In this part, we study the effect of our method with various
parameter settings of the regularization parameter 7 and window
size parameter ws.

To observe the effect of the regularization parameter, we con-
duct face image super-resolution experiments with various val-
ues of 7. All the input face images are corrupted by a square “ba-
boon” block image and downsampled to be used as the noisy LR
test data. In Fig. 6, we draw the PSNR (dB) and SSIM [44] val-
ues of our MCRL-ANE approach with various values of 7. From
Fig. 6, it can be observed that as 7 grows, the super-resolution
performance of MCRL-ANE first rises and then decreases. Val-
ues of 7 that are too large or too small provide no improvement to
the reconstruction performance. When the values of 7 are set to
approximately 50, our method can achieve stable performance.

InFig. 7, we show the effectiveness of our method with differ-
ent parameter settings of window size ws. It should be noted that
when the patch size and the window size are all 12 x 12 pixels,
our method tends to be the position-patch-based approach. By
considering more contextual patches (e.g., set window size to
16) when performing representation learning, the performance
of our MCRL-ANE approach has a distinct improvement. When
the size of the window is larger than 16 x 16 pixels, the perfor-
mance first increases and then tends to decrease. In our next
evaluations, we configure the window size as 16 x 16 to make
a desired trade-off between the computational cost and the per-
formance.

D. Comparison With State-of-the-arts

In this part, we compare our method with some comparative
approaches, including several deep CNN-based methods (i.e.,
SICNN [41], FSRNet [38], DICNet [43], and SPARNet [27]) and
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Fig. 8.

(a) (b) () (d) (e) ® (g) (h) @ () (k) ®

Hallucinated results of respective methods for corrupted LR faces with block noises. From left to right are (a) the low-quality observations and the

hallucinated outputs of (b) SICNN [41], (c) FSRNet [38], (d) DICNet [43], (e) SPARNet [27], (f) LcR [19], (g) RLcBR [34], (h) TLcR [17], (i) PRGFC [36],

(j) our VCRL-ANE, (k) our MCRL-ANE, and (1) the original HR faces.

TABLE III
THE QUANTITATIVE COMPARISONS FOR LOW-QUALITY FACES CORRUPTED BY
BLOCK NOISE

Methods PSNR(dB) SSIM
SICNN [41] 22.4933 0.7452
FSRNet [38] 22.7031 0.7861
DICNet [43] 22.9736 0.7977
SPARNet [27] 23.0327 0.7991
LcR [19] 24.4348 0.8134
RLcBR [34] 24.9246 0.8210
TLcR [17] 25.3728 0.8200
PRGEFC [36] 25.6064 0.8199
VCRL-ANE 26.1050 0.8219
MCRL-ANE 26.4431 0.8284

several position-patch-based methods (i.e., LcR [19], TLcR [17],
RLcBR [34], and PRGFC [36]. All the comparative approaches
are tuned to attain their best performance.

The performance of each method is evaluated in super-
resolving face images corrupted by a square “baboon” image
block and mixture noises (e.g., Gaussian noise and block occlu-
sion), respectively. Objectively, the values of PSNR and SSIM
are also used to quantitatively investigate the reconstruction per-
formance of each method. Tables III and IV depict the average
PSNR (dB) and SSIM values of the respective methods. It can be
seen that our method yields the best performance in terms of both
PSNR and SSIM. When compared with the recently presented

TABLE IV
THE QUANTITATIVE COMPARISONS FOR LR FACES CORRUPTED BY MIXTURE
NOISES

Methods PSNR(dB) SSIM
SICNN [41] 21.4075 0.6263
FSRNet [38] 21.1536 0.5390
DICNet [43] 21.3730 0.6289
SPARNet [27] 21.5064 0.6351
LcR [19] 23.2248 0.7431
RLcBR [34] 23.7746 0.7739
TLcR [17] 24.2761 0.7712
PRGEFC [36] 24.4906 0.7752
VCRL-ANE 24.8022 0.7782
MCRL-ANE 25.0113 0.7817

contextual patch steered PRGFC [36] (i.e., the second-best com-
peting method in the experiments), our method can still have
considerable gain.

Some hallucinated faces of each method are listed in Figs. 8
and 9 for further qualitative comparisons. The deep CNN-based
methods (i.e., SICNN [41], FSRNet [38], DICNet [43], and
SPARNet [27]) cannot attain satisfactory performance when
the LR faces contain noise. The reason may be that they do
not take into consideration the highly structured position prior
and noise prior, which have a crucial impact in robust face im-
age super-resolution tasks. The hallucinated faces of LcR [19]
and RLcBR [34] have better visual effects. TLcR [17] and
PRGFC [36] were recently proposed as effective methods that
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Fig.9.

Hallucinated results of respective methods for corrupted LR faces with mixture noises (Gaussian and block noises). From left to right are (a) the low-quality

observations and the hallucinated outputs of (b) SICNN [41], (c) FSRNet [38], (d) DICNet [43], (e) SPARNet [27], (f) LcR [19], (g) RLcBR [34], (h) TLcR [17],
(i) PRGFC [36], (j) our VCRL-ANE, (k) our MCRL-ANE, and (1) the original HR faces.

can preserve more facial details. By considering the contextual
information around the testing patch and adaptively embedding
primary training samples for more accurate and reasonable re-
construction, the hallucinated faces of our method look more
similar to the ground truth.

E. Comparisons on Real-World Faces

In all the above evaluations, the observed low-quality in-
put face images stem from their related original high-quality
counterparts. In real application scenes, it is unreasonable and
difficult to simulate the process of image degradation. Thus, in
this part, we perform experiments to testify the effectiveness of
our approach on real-world low-quality face images.

We manually extract the low-quality face images from the
CMU+MIT dataset [49] and slightly align them to the samples
in the FEI dataset for better reconstruction. Then, these natively
low-quality faces are resized to have a size of 30 x 25. Fig. 10
shows the visual results of the respective methods on several
real low-quality images with block or mixture noise. Compared
with other methods, our VCRL-ANE and MCRL-ANE can yield
the best visual performance. We can see that compared with the
results in Figs. 8 and 9, our method can still generate some ghost-
ing effects around the occlusion area, which further illustrates
the difficulty of hallucinating faces in real-world applications.

VI. SUMMARIES AND FUTURE WORK

In this work, an approach named context-patch representa-
tion learning with adaptive neighbor embedding (CRL-ANE)
was proposed for face image super-resolution. To obtain stable
and robust representation weights, we utilized the context-patch

(@) (b) © (d) (e) ®

Fig. 10. Hallucinated results for LR faces extracted from the real-world
dataset. From left to right: (a) the input LR noisy faces, (b) the results of FSR-
Net [38], (c) the results of RLcBR [34], (d) the results of PRGFC [36], (e) the
results of our VCRL-ANE, and (f) the results of our MCRL-ANE.
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around the testing patch for representation learning. Addition-
ally, based on the inherent facial structural properties, we design
an adaptive neighbor embedding strategy for each input patch
set. By combining the two strategies, the proposed framework
can perform stable representation learning and accurate recon-
struction. Experiments on the public face dataset have shown the
efficiency and effectiveness of the proposed method over some
state-of-the-arts.

In real-world surveillance scenes, the pose and misalignment
variations cannot be also ignored. For such degraded faces, learn-
ing the robust feature representation should also be well-studied.
Furthermore, incorporating more highly structured facial priors
(e.g., position and noise priors) into deep models to handle the
diverse noisy face image super-resolution task is also part of our
future work.
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