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Cross-Receptive Focused Inference Network for
Lightweight Image Super-Resolution
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Abstract—Recently, Transformer-based methods have shown
impressive performance in single image super-resolution (SISR)
tasks due to the ability of global feature extraction. However, the
capabilities of Transformers that need to incorporate contextual
information to extract features dynamically are neglected. To
address this issue, we propose a lightweight Cross-receptive
Focused Inference Network (CFIN) that consists of a cascade
of CT Blocks mixed with CNN and Transformer. Specifically,
in the CT block, we first propose a CNN-based Cross-Scale
Information Aggregation Module (CIAM) to enable the model
to better focus on potentially helpful information to improve the
efficiency of the Transformer phase. Then, we design a novel Cross-
receptive Field Guided Transformer (CFGT) to enable the selection
of contextual information required for reconstruction by using
a modulated convolutional kernel that understands the current
semantic information and exploits the information interaction
within different self-attention. Extensive experiments have shown
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that our proposed CFIN can effectively reconstruct images using
contextual information, and it can strike a good balance between
computational cost and model performance as an efficient model.

Index Terms—SISR, Cross-receptive, contextual information,
efficient model.

I. INTRODUCTION

HE task of Single Image Super-Resolution (SISR) aims to
T estimate a realistic High-Resolution (HR) image from the
Low-Resolution (LR) one, which plays a fundamental role in
various computer vision tasks, including face imaging [1], [2],
hyperspectral imagery [3], video processing [4], and medical
imaging [5]. As an ill-posed problem, SISR is still a challenging
task. To solve this task, many Convolutional Neural Networks
(CNN) based methods have been proposed to directly learn the
mapping between the LR and HR image pairs. For example,
Dong et al. presented the first CNN-based model, dubbed SR-
CNN [6]. Although SRCNN only has three convolutional layers,
its performance is significantly better than traditional solutions.
Subsequently, a series of networks with complex architectures
were proposed, and deep CNN-based methods have achieved
remarkable progress in SISR [7]. Although these models have
achieved promising results, their computational cost is often too
huge (Fig. 1) to be popularized and widely used.

To solve the problems mentioned above, constructing
lightweight SISR models has attracted more and more attention.
Among these CNN-based lightweight models, most of them fo-
cus on efficient network architecture design, such as neural ar-
chitecture search [8], multi-scale structure design [9], [10], and
channel grouping strategy [11]. However, convolution kernels
can only extract local features, which is difficult to model the
long-term dependencies of the image. As a complementary so-
lution to CNN, Transformer has achieved excellent performance
in many visual tasks with its powerful global modeling capabil-
ity [12], [13]. Recently, some Transformer-based SISR methods
have been proposed [14], [15]. For instance, SwinIR [16] intro-
duced Transformer into SISR, relying on its advantage of us-
ing a shifted window scheme to model long-term dependencies,
showing the great promise of Transformer in SISR. ESRT [17]
is an efficient SISR model that combines a lightweight CNN
and lightweight Transformer in an end-to-end model. However,
most existing Transformer-based methods ignore the impor-
tance of dynamic modeling with context. As studied in neurol-
ogy [18], the morphology of neurons should change adaptively
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Fig. 1. Model inference time studies on Set14 (x4).

with changes in the environment. This adjustment mechanism
has been studied in many fields. For example, Jiaetal. [19] gener-
ated convolution kernel weights from the features extracted from
another network. Chen et al. [20] aggregated multiple convolu-
tion kernels in parallel and based on local attention to adaptively
adjust the weights. Lin et al. [21] presented the context-gated
convolution to incorporate contextual awareness into the con-
volutional layer. It is worth noting that each pixel in an image
cannot be isolated, they should have some relationship to those
pixels around it, and this relationship is referred as contextual
information in the text. Such a designation has been widely used
in image segmentation tasks [22].

Motivated by the above methods, in this paper, we intro-
duce the power of contextual reasoning into Transformer and
propose a lightweight Cross-receptive Focused Inference Net-
work (CFIN) for SISR. CFIN is a hybrid network composed
of a Convolutional Neural Network (CNN) and a Transformer.
In the convolution stage, a Cross-scale Information Aggrega-
tion Module (CIAM) is designed to extract more potentially
useful information with the help of the Redundant Informa-
tion Filter Unit (RIFU). In the Transformer stage, we propose
a Cross-receptive Field Guide Transformer (CFGT) to achieve
cross-scale long-distance information fusion with specially de-
signed Context Guided Attention (CGA). In summary, the main
contributions of this paper can be summarized as follows:

® We propose a Redundant Information Filter Unit (RIFU),
which can remove redundant information and learn flexible
local features. Meanwhile, an efficient Cross-scale Infor-
mation Aggregation Module (CIAM) is specially designed
for elaborately combining several RIFUs to ensure full use
of local features.

® We propose a Context Guided Attention (CGA) scheme,
which can adaptively adjust the weights of the modulat-
ing convolution kernel to achieve the selection of the de-
sired contextual information. In addition, a novel Cross-
receptive Field Guide Transformer (CFGT) is proposed to
combine CGAs of different receptive fields to further fa-
cilitate contextual interactions.

e We propose a lightweight Cross-receptive Focused Infer-
ence Network (CFIN) for SISR. CFIN elegantly integrates
CNN and Transformer, achieving a good balance between
computational cost and model performance.

II. RELATED WORK
A. Lightweight SISR Model

Due to the powerful learning ability of neural networks, more
and more effective SISR methods based on neural networks are
proposed [23], [24], [25], [26], [27]. However, most of the meth-
ods are limited to real-world applications due to their huge com-
putational cost. To handle this issue, some lightweight and ef-
ficient SISR methods based on model architecture have been
presented. For example, IDN [28] used an information distilla-
tion network to selectively fuse features, and then IMDN [29]
improved it to build a lighter and faster model. RFDN [30] com-
bined channel splitting and residual structure to achieve better
performance. LatticeNet [31] enhanced the representation of the
model with designed lattice blocks. PFFN [32] made full use of
the feature map for each layer by the proposed pixel attention.
FDIWN [33] improved the model performance by fully using
the intermediate layer features. LatticeNet-CL [34] further en-
hanced LatticeNet by using contrast loss as a regularization con-
straint. In addition, some recent Transformer-based approaches
have made promising progress in SISR tasks. SwinIR [16] per-
formed global attention operations separately on the divided
windows and achieved performance beyond the CNN model.
ESRT [17] and LBNet [14] performed feature splitting by ef-
ficient multi-headed attention, significantly reducing the train-
ing memory of the Transformer. However, existing lightweight
methods often neglect the importance of contextual information,
which may be useful for image reconstruction.

B. Context Reasoning

With an in-depth understanding of deep learning, researchers
tentatively explored how to increase the contextual information
of the model. It can be roughly divided into the following cat-
egories. For example, using the attention mechanism to modify
the feature representation, and the typical one is to modify the
local features through the attention mechanism [35]. However,
most of them can only modify the features by changing the input
mapping. Recently, some works [20], [36], [37], [38] have tried
to dynamically change network parameters by analyzing local
or global information. However, they only consider local frag-
ments [36], ignore weight tensors in convolutional layers [37],
or have high training costs [38]. Researchers in [39] imitated
the human visual system and simulated the bottom-up impact
of semantic information on the model through reverse connec-
tions, but this feedback mechanism is difficult to explain in the
model. In addition, none of them use contextual information to
guide global attention interactions dynamically. In this work,
we aim to introduce context reasoning to further enhance the
performance of the model and build a model that can adaptively
modify the network weights.

III. PROPOSED METHOD
A. Cross-Receptive Focused Inference Network

In this paper, we devise a lightweight Cross-receptive Fo-
cused Inference Network (CFIN) for SISR. As shown in Fig. 2,
CFIN consists of several CNN-Transformer (CT) blocks and
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Fig. 2.
reduction and channel expansion in CFIN.

two PixelShuffle layers. Meanwhile, each CT block contains a
convolution stage and a Transformer stage. And each two CT
block is called once using a loop mechanism for a better trade-off
between model size and performance. We define the input and
output of CFIN as I, r and IR, respectively. Firstly, the dimen-
sion of the input image is rapidly increased to obtain shallow
features I1,41100 fOr subsequent processing

Ishallow = Fce(ILR)7 (1)

where F.(-) is the channel expansion operation. Then, the shal-
low features are sent to CT blocks for feature extraction, and the
complete operation of each CT block can be defined as follows

Iy = Fop (L) = For(Pr(Fee(Fe(I},)) + I, ()

where Fi.(-), Fee(:), Fo(+), and Fr(-) denote the channel re-
duction operation, channel expansion, the convolution stage, and
the Transformer stage, respectively. I?, and I, are the input and
output of the i-th CT block. After the operation of N CT blocks,
we can attain the final deep features as

Iey :Fé'vT(Févfl("'FgT(FéT(Ishallow))))a 3)

where I.; denotes the output of the NV-th CT block. Finally, to
obtain the final SR image, both I.; and I}, r are simultaneously
fed into the post-sampling reconstruction module

IS'R = Frec(]ct) + Frec(ILR)7 (4)

where F..(-) is the post-sampling reconstruction module,
which is composed of a 3 x 3 convolutional layer and a Pix-
elShuffle layer.

B. Convolution Stage

In the convolution stage, we propose a Cross-scale Informa-
tion Aggregation Module (CIAM) to refine potential image in-
formation and make the model understand the preliminary SR
information. As shown in Fig. 3, CIAM is mainly composed of
three Redundant Information Filter Units (RIFU).

1) Redundant Information Filter Unit (RIFU): According to
previous work [40], we can know that it is easier to recover

Overall architecture of the proposed Cross-receptive Focused Inference Network (CFIN). It is worth noting that 1 x 1 convolution is used for channel

: DeConvolution

: Stride Convolution !

CIAM

: Sigmoid Function

: Element-wise Sum

: Element-wise Mul !

="+ Gumbel Softmax \‘
i —:1x1 Conv
i CA: Channel Attention !

Fig. 3. Framework of Cross-scale Information Aggregation Module (CIAM)
and Redundant Information Filter Unit (RIFU).

the smooth area that occupies most of the image area, but the
complex texture information that occupies a small area of the
image is difficult to recover. However, most SR methods tend to
treat all areas of the image equally, which leads to the smooth
area that accounts for most areas of the image being paid more
attention by the network, which may miss the correct texture
information, so accurate modeling cannot be achieved. In previ-
ous work [41], some methods convert the image from the time
domain to the frequency domain by discrete cosine transform
(DCT), and then manually set a threshold 7" to discard the fre-
quency domain information greater or less than 7 to filter the
secondary information. However, we also found that the input
images used for training vary widely. Using manual thresholding
is sensitive to noise, which is not suitable for all images. There-
fore, we aim to explore a method that can make the network find
a mask that instructs the model to pay more attention to texture
features. To achieve this, we propose a Redundant Information
Filter Unit (RIFU). As given in Fig. 3, after the input feature
x enters RIFU, it first goes through a convolutional layer and
an activation layer to obtain a mixed feature X. Then, we use a
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1 x 1 convolutional layer to transform the number of channels
of the output Rto M (M = 3), and its process can be formulated
as

X = flrelu( gg;?v(‘r))v (5)
R = fn >3(X), (6)
where 3;"%() represents the 3 x 3 convolutional layer, fj,ejy-

represents the LeakyRelu function, and f,_~3 represents the
1 x 1 convolutional layer. Next, unlike channel attention or
spatial attention, which often use pooling layers to accom-
plish redundant feature removal, we use the Gumbel Softmax
trick [42] to generate a continuous differentiable normal distri-
bution, which can well approximate the probability distribution
represented by the network output and randomly add some sam-
pling. Thus, the Gumbel-Softmax enables RIFU to retain some
potentially useful information in addition to salient textural fea-
tures. The process can be formulated as follows

exp((R; + gsi)/T)
St exp((Ri, +954,.)/7)
where 7 defaults to 1, and gs; represents the noise obeying the
Gumbel(0, 1) distribution. During training, we need the model

to select only one channel from the three channels and the chan-
nel selection formula is as follows

GS; =

)

Ymask = arg One(GSim)v (8)

where y,,qs1 represents the single-channel output feature after
masking, and arg one(.) represents the argmax branch of G.S;
in m channels. After that, we multiply X by the y,,,si feature
mask to preserve the initial details, then a convolutional layer
and an attention mechanism are subsequently added to focus on
the refined features and get the final output y of RIFU through
residual connection

y = foa (223 (Ymask x X)) + =, 9)

where fc(+) represents the channel attention mechanism.

2) Cross-Scale Information Aggregation Module (CIAM):
Due to the difference in model structure, the learned features
are inevitably redundant. Meanwhile, with limited computing
resources, we hope that the model will pay more attention to
features with higher priority. So CIAM is designed to efficiently
combine RIFU, which role is to extract more potentially effec-
tive information, mine deep image features, and make full use
of information from different scales to observe image features.

In terms of network architecture design, simply combining
RIFU in series is not conducive to gradient flow and collecting
contextual information at different spatial locations. To solve this
problem, we innovatively use two different scale-spaces for fea-
ture transformation in the middle of the module. Among them,
one is the original space, whose feature map size has the same
resolution as the input, and the other is the large space after the
deconvolution operation. The receptive field of the transformed
embedding is very large and can be used to guide the feature
transformation in the original feature map. The process can be
defined as

Thw = friru(TaW), (10)
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Fig. 4. (a) Traditional convolution focuses on local features. (b) Traditional
Transformer uses global feature interactions to focus on key information. (c) Our
proposed Context Guided Attention (CGA), guided by locally representative
modulated convolution kernels, can adaptively combine context information to
modify feature maps. Among them, the red box represents the Context Guided
MaxConv (CGM) operation and the green box represents the self-attention, and
© denotes the convolution operation.

x?—IW = fscom)(fdecon'u($}-lw)) X fsig(fRIFU(x}-IW))a (11)

where %, represents the output features with the size of
H x W for each stage within the module, fr;ry (+) represents
the proposed RIFU, fscony(+) and fiecons(+) represent the de-
convolution and strided convolution with s = 2, and f;(-) rep-
resents the Sigmoid function.

Finally, the dense residual learning mechanism is introduced
into the module to prevent the vanishing gradient. Therefore,
this module has the potential for multiple RIFUs permutations
and combinations, and its output x?;IW can be formulated as

3w = frirv (@hw + TEW) + TEW. (12)

C. Transformer Stage

In recent years, Transformer has shown great potential on
SISR, which can learn global information of images through
its powerful self-attention mechanism. However, existing self-
attention mechanisms often neglect to incorporate contextual
features to build attention. To address this issue, we propose a
Cross-receptive Field Guided Transformer (CFGT) in the Trans-
former stage. In CFGT, a specially designed Context Guided
MaxConv (CGM) is introduced as its basic unit, which can adjust
the weights of the network adaptively by reasoning the current
semantic information, thus obtaining the features needed for the
current pixel reconstruction from the contextual information. It
is worth noting that semantic information usually refers to fea-
tures of the image itself, such as texture, color, attributes, etc. It
also meets the requirements of long-range modeling by estab-
lishing connections between the upper and lower CGAs across
scalable perceptual fields.

1) Context Guided Attention (CGA): As shown in Fig. 4,
traditional convolution focuses on local features, and tradi-
tional Transformer uses self-attention to capture the global
Information. However, the traditional Transformer cannot take
into account the locally dominant features, and the self-attention
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mechanism is also unable to incorporate contextual information.
To alleviate this problem, we propose a new attention, named
Context Guided Attention (CGA) (illustrated in Fig. 4(c)), the
red box represents the Context Guided MaxConv (CGM) mod-
ule, where the modulated convolutional kernel uses the ex-
tracted semantic information to dynamically modulate its own
weights to achieve an autonomous selection of information from
the input context. Among them, the green box represents the
self-attention mechanism, which performs global feature extrac-
tion based on the guided information output by the CGM in the
red box.

According to Fig. 5, we can clearly see that before com-
puting the feature covariance to generate the global attention
map, we introduce the Context Guided MaxConv (CGM) to em-
phasize the local context. Specifically, we first generate query
(@), key (K), and value (V') projections from the input tensor
X € ROHXW  After that, we separately add representative lo-
cal contexts to them, which are obtained by encoding the channel
context through CGM Q = W&, (X), K = W&,,,(X), and
V =Who (X), (Q, K, V) € R*C/h<HW “Among them, h
is the amount of attention and Wegay(+) represents the pro-
posed CGM, similar to traditional multi-head attention [43]. In
this work, we divide the number of channels into A groups for
parallel learning, and the size of ), K,V is obtained after re-
shaping the tensor from the input image. Finally, we take the
dot-product to reshape the Q and V' projections to generate a
transposed attention map of size R"*C/7*C/M instead of a regu-
lar feature map of size RhxHWXHW [44]. Overall, the attention
mechanism in the first CGA can be formulated as

C%%](QvK? V) =V SOft((K : Q)/W),

13)

where Soft(-) represents the Softmax function, - represents the
dot product operation, w represents a learnable adaptive param-
eter. Due to the powerful function of CGM combined with local

Attention (CGA, k=1) IGP | B Bl
~—— MaxPool —
(Cin7k7 k)

______

(Cin ) kz) (Cout ) kz)

Architecture of the proposed Cross-receptive Field Guide Transformer (CFGT), Context Guided Attention (CGA), Context Guided MaxConv (CGM),

features to explicitly modify the modulation kernel, the projec-
tion vector generated in the previous space can be used to guide
the generation of subsequent attention.

Context Guided MaxConv (CGM): In the convolution oper-
ation on the input feature X;,, € R~ H*W 3 Jocal feature
block of size k x k (k is the size of the convolution kernel)
is extracted through a sliding window, and the extracted feature
block is subsequently multiplied by the convolution kernel. Such
a convolution operation can only extract local features and can-
not adaptively affect the kernel based on the current semantic
information. Recently, methods for context reasoning [45], [46]
have been extensively studied. Motivated by [21], we propose a
Context Guided MaxConv (CGM) to dynamically extract repre-
sentative local patterns within Transformer in conjunction with
contextual guidance.

As shown in Fig. 5, to extract the representative informa-
tion, we scale the input image to the size of k£ x k by using the
max-pooling operation. Then, to alleviate the time-consuming
kernel modulation caused by a large number of channels, we fol-
low the idea of matrix decomposition [47] and reduce the com-
plexity by generating two tensors through two branches. One
of the branches draws on the idea of bottleneck design [35].
We project the spatial position information into a vector of
size k?/2 through a linear layer of shared parameters and
then generate new channel weights from this vector. In another
branch, the idea of grouped convolution is applied to the linear
layer, and the output dimension C,,; is obtained by introduc-
ing a grouped linear layer with weight. Then, reshape the two
branches to obtain tensors with the size of Cyy; X 1 X k X k
and 1 x C;, X k x k. Meanwhile, the two tensors are then
summed by element to obtain our modulated convolution ker-
nel, whose size is modulated to C;,, X C,ut X k X k to simu-
late the convolution kernel under real convolution operations.
Subsequently, the simulated modulated convolution kernel is
multiplied with the adaptive multiplier w. This process can be
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formulated as

C’inxCautxkxk)
)

W' = kernel x w(w' € R (14)

where kernel represents our modulated convolutional kernel,
and «’ represents the adaptive modulated convolutional kernel.
It’s worth noting that w is an adaptive multiplier that is consistent
with the size of the tensor. After multiplying it with the tensor,
the tensor can be converted into a set of trainable type parame-
ters and bound to the module. During the learning process, the
weights of w can be automatically learned and modified to opti-
mize the model. On the other hand, the input X;,, € RCm*H*xW
uses the unfold function to locally connect the sliding features
of size k x k extracted from each sliding window to make con-
textual connections between different pixel features to obtain a
feature map of size X;,,’ € Rk Cin xHW Finally, a modulated
convolutional kernel w’ that fully understands the semantic in-
formation of the current key pixel can use the input X;,’ to
obtain guidance on context to adaptively capture the contextual
information needed for the key pixel.

2) Cross-Receptive Field Guide Transformer (CFGT): In
this paper, we propose a Cross-receptive Field Guide Trans-
former (CFGT) for long-distance modeling. In contrast to pre-
vious Transformer-based methods, such as SwinIR [16] and
LBNet [14], our CFGT shares the information within different
self-attention for better global modeling. As shown in Fig. 5,
CFGT is mainly composed of two CGAs and one Interactive
Guidance Perceptron (IGP) in the encoder part. Meanwhile, hi-
erarchical normalization is performed after each block, and the
local residual connection is used. It is worth noting that the CGM
in the two CGAs adopts different k (k represents the size of the
receptive field that the CGM focuses on). Since a larger recep-
tive field may bring more computational load, we simulate the
common convolutional kernel size and chose 3 X 3 and 1 x 1
receptive fields. Therefore, cross-attention can supplement the
model with cross-scale features. And the understanding of cur-
rent pixel-level features to other pixel features is facilitated by
communicating features across scales, thus allowing the model
to acquire richer contextual information. We assume that the in-
put of CFGT is Tj,,, then the output T,,,; can be formulated as

T = Norm(CGA(T;,)) + Tin, (15)
T2 g =Norm(CGA(T g K, V) + Teq,  (16)
Tout = Norm(IGP(T}2.q)) + T eas (17)

where K and V' are the key and value generated by the first
CGA, and they will serve as part of the input of the second CGA
and interact with the ', K, V' generated by the second CGA.
The operation of the second CGA can be defined as

/ Ry _ /
CétXZ(Q,K,V,K,V)—(V +V)

SSoft((K'+ K) - Q) /w), (18)
Similarly, our IGP also adopts the idea of cross-receptive
fields, connecting a CGM with k£ = 3 and a CGM with k =1

using a residual structure to enhance the attention of the Trans-
former. In general, contextual interaction within CFGT mainly

consists of two main parts. One is the interaction brought by cap-
turing the contextual information contained in the input through
the modulated convolutional kernel within the CGM. The other
is the interaction between the upper and lower two CGAs through
the communication of vectors K and V' with different sizes of
receptive fields.

D. Loss Function

During training, given a training set {12, THR}N | the loss

function of CFIN can be expressed by
1 X
Loss (0) = arg min N; |Ferin(ILgr) — gl (19)

where Fo v (+) represent our proposed CFIN, 6 represents the
parameter set of CFIN, and N represents the number of LR-HR
pairs in the training set.

IV. EXPERIMENTS

In this part, we provide relevant experimental details, descrip-
tions, and results to verify the effectiveness and excellence of
the proposed CFIN.

A. Datasets and Metrics

Following previous works, we utilize DIV2K [55] (1-800)
as our training dataset. Meanwhile, we used five benchmark
datasets to verify the effectiveness of the proposed model, in-
cluding Set5 [56], Set14 [57], BSDS100 [58], Urban100 [59],
and Mangal09 [60]. Additionally, we used Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity (SSIM) to evaluate the
quality of our restored images on the Y channel of the YCbCr
color space.

B. Implementation Details

During training, we randomly crop patches with the size of
48 x 48 from the training set as input and use horizontal flipping
and random rotation for data augmentation. The initial learning
rate is set to 5 x 1074, which is finally reduced to 6.25 x 1076
by cosine annealing. Meanwhile, we implement our model with
the PyTorch framework and update it with Adam optimizer. All
our experiments are conducted on NVIDIA RTX 2080Ti GPU.
In the final model CFIN, we use 8 transformer stages and 8
convolution stages, all of which are called twice using a loop
mechanism. Meanwhile, we set the initial input channel to 48
and use the weight normalization [61] after each convolutional
layer in RIFUs.

C. Comparison With Advanced Lightweight SISR Models

In this section, we compare our proposed CFIN with other ad-
vanced lightweight SISR models to verify the effectiveness of
the proposed model. In addition, we provide a version with the
self-integrating strategy [64] and denote it as CFIN+. In Table I,
we compare CFIN with CNN-based models. From the table, we
can clearly observe that our CFIN+ and CFIN stand out from
these methods and achieve the best and the second-best results
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TABLE I
PERFORMANCE COMPARISONS WITH OTHER ADVANCED CNN-BASED SISR MODELS

. Set5 Setl4 BSDS100 Urban100 Mangal09

Methods Scale | Params | Multi-adds | —pexpresmn [ PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM
DN [28] 553K 124.6G | 37.83/0.9600 | 33.30/0.0148 | 32.08/0.8985 | 31.27/0.9196 | 38.01/0.0749
CARN [11] 1592K | 222.8G | 37.76/0.9590 | 33.52/0.9166 | 32.09/0.8978 | 31.92/0.9256 | 38.36/0.9765
IMDN [29] 694K 158.8G | 38.00/0.9605 | 33.63/0.9177 | 32.19/0.8996 | 32.17/0.9283 | 38.88/0.9774
AWSRN-M [48] 1063K | 244.1G | 38.04/0.9605 | 33.66/0.9181 | 32.21/0.9000 | 32.23/0.9294 | 38.66/0.9772
MADNet [49] 878K 187.1G | 37.85/0.9600 | 33.38/0.9161 | 32.04/0.8979 | 31.62/0.9233 -

MAFESRN-L [50] 790K 1544G | 38.07/0.9607 | 33.59/0.9177 | 32.23/0.9005 | 32.38/0.9308 -

LAPAR-A [51] 548K 171.0G | 38.01/0.9605 | 33.62/0.9183 | 32.19/0.8999 | 32.10/0.9283 | 38.67/0.9772
REDN [30] 534K 123.0G | 38.05/0.9606 | 33.68/0.9184 | 32.16/0.8994 | 32.12/0.9278 | 38.88/0.9773
LatticeNet+ [31] vy | 736K 165.5G | 38.15/0.9610 | 33.78/0.9193 | 32.25/0.9005 | 32.43/0.9302 -

SMSR [52] 985K | 351.5G | 38.00/0.9601 | 33.64/0.9179 | 32.17/0.8990 | 32.19/0.9284 | 38.76/0.9771
PFFN [32] 569K 1383G | 38.07/0.9607 | 33.69/0.9192 | 32.21/0.8997 | 32.33/0.9298 | 38.89/0.9775
DRSAN [53] 690K 1593G | 38.11/0.9609 | 33.64/0.9185 | 32.21/0.9005 | 32.35/0.9304 y

FDIWN [33] 629K 1120G | 38.07/0.9608 | 33.75/0.9201 | 32.23/0.9003 | 32.40/0.9305 | 38.85/0.9774
LatticeNet-CL [34] 756K 169.5G | 38.09/0.9608 | 33.70/0.9188 | 32.21/0.9000 | 32.29/0.9291 -

FMEN [54] 748K 172.0G | 38.10/0.9609 | 33.75/0.9192 | 32.26/0.9003 | 32.41/0.9311 | 38.95/0.9778
CFIN (Ours) 675K 116.9G | 38.14/ 0.9610 | 33.80/0.9199 | 32.26/ 0.9006 | 32.48/ 0.9311 | 38.97/0.9773
CFIN+ (Ours) 675K 116.9G | 38.22/ 0.9613 | 34.01/ 0.9221 | 32.35/ 0.9016 | 32.93/ 0.9347 | 39.21/ 0.9777
DN [28] 553K 56.3G 34.11/0.9253 | 29.99/0.8354 | 28.95/0.8013 | 27.42/0.8359 | 32.71/0.9381
CARN [11] 1592K | 118.8G | 34.29/0.9255 | 30.29/0.8407 | 29.06/0.8034 | 28.06/0.8493 | 33.43/0.9427
IMDN [29] 703K 71.5G 34.36/0.9270 | 30.32/0.8417 | 29.09/0.8046 | 28.17/0.8519 | 33.61/0.9445
AWSRN-M [48] 1143K | 116.6G | 34.42/0.9275 | 30.32/0.8419 | 29.13/0.8059 | 28.26/0.8545 | 33.64/0.9450
MADNet [49] 930K 88.4G 34.16/0.9253 | 30.21/0.8398 | 28.98/0.8023 | 27.77/0.8439 :

MAFFSRN-L [50] 807K 68.5G 34.45/0.9277 | 30.40/0.8432 | 29.13/0.8061 | 28.26/0.8552 .

LAPAR-A [51] 594K 1140G | 34.36/0.9267 | 30.34/0.8421 | 29.11/0.8054 | 28.15/0.8523 | 33.51/0.9441
REDN [30] 541K 554G 34.41/0.9273 | 30.34/0.8420 | 29.09/0.8050 | 28.21/0.8525 | 33.67/0.9449
LatticeNet+ [31] w3 | 765K 76.3G 34.53/0.9281 | 30.39/0.8424 | 29.15/0.8059 | 28.33/0.8538 -

SMSR [52] 993K 156.8G | 34.40/0.9270 | 30.33/0.8412 | 29.10/0.8050 | 28.25/0.8536 | 33.68/0.9445
PFEN [32] 558K 69.1G 34.54/0.9282 | 30.42/0.8435 | 29.17/0.8062 | 28.37/0.8566 | 33.63/0.9455
DRSAN [53] 740K 76.0G 34.50/0.9278 | 30.39/0.8437 | 29.13/0.8065 | 28.35/0.8566 -

FDIWN [33] 645K 51.5G 34.52/0.9281 | 30.42/0.8438 | 29.14/0.8065 | 28.36/0.8567 | 33.77/0.9456
LatticeNet-CL [34] 765K 76.3G 34.46/0.9275 | 30.37/0.8422 | 29.12/0.8054 | 28.23/0.8525 -

FMEN [54] 757K 77.2G 34.45/0.9275 | 30.40/0.8435 | 29.17/0.8063 | 28.33/0.8562 | 33.86/0.9462
CFIN (Ours) 681K 53.5G | 34.65/ 0.9289 | 30.45/ 0.8443 | 29.18/ 0.8071 | 28.49/ 0.8583 | 33.89/ 0.9464
CFIN+ (Ours) 681K 53.5G 34.75/0.9298 | 30.59/0.8467 | 29.27/0.8091 | 28.85/0.8645 | 34.26/0.9484
DN [28] 553K 323G 31.82/0.8903 | 28.25/0.7730 | 27.41/0.7297 | 25.41/0.7632 | 29.41/0.8942
CARN [11] 1592K | 909G 32.13/0.8937 | 28.60/0.7806 | 27.58/0.7349 | 26.07/0.7837 | 30.42/0.9070
IMDN [29] 715K 40.9G 32.21/0.8948 | 28.58/0.7811 | 27.56/0.7353 | 26.04/0.7838 | 30.45/0.9075
AWSRN-M [48] 1254K | 72.0G 32.21/0.8954 | 28.65/0.7832 | 27.60/0.7368 | 26.15/0.7884 | 30.56/0.9093
MADNet [49] 1002K | 54.1G 31.95/0.8917 | 28.44/0.7780 | 27.47/0.7327 | 25.76/0.7746 -

MAFFSRN-L [50] 830K 38.6G 32.20/0.8953 | 28.62/0.7822 | 27.59/0.7370 | 26.16/0.7887 -

LAPAR-A [51] 659K 94.0G 32.15/0.8944 | 28.61/0.7818 | 27.61/0.7366 | 26.14/0.7871 | 30.42/0.9074
REDN [30] 550K 31.6G 32.24/0.8952 | 28.61/0.7819 | 27.57/0.7360 | 26.11/0.7858 | 30.58/0.9089
LatticeNet+ [31] 777K 43.6G 32.30/0.8962 | 28.68/0.7830 | 27.62/0.7367 | 26.25/0.7873 -

SMSR [52] x4 | 1006K 89.1G 32.12/0.8932 | 28.55/0.7808 | 27.55/0.7351 | 26.11/0.7868 | 30.54/0.9085
PFEN [32] 569K 45.1G 32.36/0.8967 | 28.68/0.7827 | 27.63/0.7370 | 26.26/0.7904 | 30.50/0.9100
DRSAN [53] 730K 49.0G 32.30/0.8954 | 28.66/0.7838 | 27.61/0.7381 | 26.26/0.7920 -

FDIWN [33] 664K 28.4G 32.23/0.8955 | 28.66/0.7829 | 27.62/0.7380 | 26.28/0.7919 | 30.63/0.9098
LatticeNet-CL [34] 777K 43.6G 32.30/0.8958 | 28.65/0.7822 | 27.59/0.7365 | 26.19/0.7855 :

FMEN [54] 769K 442G 32.24/0.8955 | 28.70/0.7839 | 27.63/0.7379 | 26.28/0.7908 | 30.70/0.9107
CFIN (Ours) 699K 31.2G 32.49/0.8985 | 28.74/0.7849 | 27.68/0.7396 | 26.39/0.7946 | 30.73/0.9124
CFIN+ (Ours) 699K 31.2G 32.60/0.8998 | 28.86/0.7871 | 27.76/0.7419 | 26.71/0.8028 | 31.15/0.9163

The best and the second-best results are highlighted and underlined, respectively. ‘+’ indicates that the model uses the self-ensemble strategy,
which is to average the results of the original image, the original horizontal flip, the original vertical flip, and the original vertical flip.

on almost all datasets. It is worth mentioning that our CFIN con-
sumes fewer parameters and computations than most methods.
This benefits from the well-designed CNN and Transformer in
CFIN, which can efficiently extract the local features and inte-
grate the global information of the image. To further demonstrate
the superiority of CFIN, in Table II, we also provide a com-
prehensive comparison with some advanced Transformer-based
models, including the lightweight version of SwinIR* [16],
ESRT [17], and LBNet [14]. All these models are the most ad-
vanced lightweight SISR models. From Table II, we can see that
our CFIN achieves better results than ESRT and LBNet with

fewer parameters and computation. Compared with SwinIR*,
our CFIN can still achieve close results than it with fewer
parameters, Multi-adds, and execution time. It is worth men-
tioning that SwinIR* uses a pre-trained model for initialization,
and sets the patch size as 64 x 64 during training. Extensive ex-
periments have shown that the larger the patch size, the better
the results. Meanwhile, some previous works [10], [65] have
pointed out that the performance of models trained with multi-
ple upsampling factors shows better results than the single one
since using the inter-scale correlation between different upsam-
pling factors can improve the model performance. Therefore,
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TABLE II
COMPARISONS WITH SOME TRANSFORMER-BASE METHODS FOR x4 SR

- . \ Set5 [ Setl4 BSDIOO |  Urbanl00 Mangal09 [ Average |

Methods ‘ Params | Muld-adds |~ GPU ‘ Time - ~pSNR 7 SSIM | PSNR / SSIM | PSNR / SSIM | PSNR / SSIM | PSNR / SSIM | PSNR / SSIM_|
SwinIR* [16] 897K 49.6G 10500M | 0.046s | 32.44/0.8976 | 28.77 / 0.7858 | 27.69 / 0.7406 | 26.47 / 0.7980 | 30.92 / 0.9151 | 29.26 / 0.8274
ESRT [17] 751K 67.7G 419IM | 0.032s | 32.19/0.8947 | 28.69 / 0.7833 | 27.69 / 0.7379 | 26.39 / 0.7962 | 30.75/0.9100 | 29.14 / 0.8244
LBNet [14] | 742K 38.9G 6417M | 0.043s | 32.29 / 0.8960 | 28.68 / 0.7832 | 27.62 / 0.7382 | 26.27 / 0.7906 | 30.76 / 0.9111 | 29.12 / 0.8238
CFIN 699K 31.2G 11453M | 0.035s | 32.49 /0.8985 | 28.74/ 0.7849 | 27.68 / 0.7396 | 26.39 / 0.7946 | 30.73 / 0.9124 | 29.21 / 0.8260
CFIN-L 852K 37.8G 14585M | 0.040s | 32.56 / 0.8988 | 28.74 / 0.7852 | 27.69 / 0.7406 | 26.49 / 0.7973 | 30.85/0.9134 | 29.27 / 0.8271

*means this model is pre-trained based on the x2 setup and the training patch size is 64 x 64 (ours is 48 x 48 and without pre-training). CFIN-L denotes a

larger version.
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Fig. 6.

these methods can further improve the model’s performance.
Moreover, we provide the results of CFIN-L, the larger version
of CFIN. It can be seen that the results of CFIN-L even surpass
SwinIR* on some datasets and still keep fewer parameters and
less time. This is due to the rational structural design and strong
modeling capabilities of CFIN. All these results fully illustrate
the strong competitiveness of CFIN in balancing the model size
and performance. In addition, we also provide a visual compar-
ison of CFIN with other SISR methods in Fig. 6. Our CFIN can
reconstruct high-quality images with more accurate textures de-
tails and edges. This further demonstrates the effectiveness of
the proposed CFIN.

D. Real-World Image Super-Resolution

To validate the performance of our proposed method in real-
world scenarios, we compare our CFIN with several classical
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Visual comparisons with different lightweight SISR models. Obviously, our CFIN can reconstruct high-quality images.

TABLE III
QUANTITATIVE COMPARISONS ON REAL-WORLD DATASETS

‘ Seale Methods | RealSRV3 DRealSR
[ PSNR 7 SSIM / LPIPS] | PSNR / SSIM / LPIPS]
SRResNet [63] | 27.70 7 0.7788 7 0.4010 | 31.18 / 0.8737 / 0.3618
" IMDN [29] | 27.76 / 0.7834 / 0.3766 | 31.30 / 0.8764 / 0.3411
ESRT [17] 27.61 /0.7788 / 0.3895 | 31.17 / 0.8737 / 0.3556
CFIN 27.84 /0.7872 / 0.3665 | 31.40 / 0.8773 / 0.3383

The bold entries indicate the best perfromance in each case.

models on RealSRv3 dataset [67] and DRealSR dataset [47].
These methods include SRResNet [63], IMDN [29], and
ESRT [17]. To speed up the training, we uniformly train all
methods using a patch size of 24 x24. It is worth noting that ex-
cept for the conventional PSNR/SSIM index, we also provide the
visual sensory index LPIPS for better comparisons. As can be
seen from Table III, our method achieves the best performance
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TABLE IV
EVALUATE THE EFFECTIVENESS OF MASKING MECHANISM
. Setl4

Scale | Mask | Params | Multi-adds PSNR 7 SSIM
%4 X 186.8K | 6.18220G | 28.22 /07723
v 187.9K | 6.21538G | 28.30 / 0.7738

The bold entries indicate the best perfromance in each case.

TABLE V
EVALUATE THE EFFECTIVENESS OF GUMBEL-SOFTMAX

. Set5
Scale Modules Params | Multi-adds PSNR 7 SSIM
RIFU-Maxpool 165K 4.89G 31.70 / 0.8876
x4 RIFU-Softmax 165K 4.89G 31.71 7/ 0.8877
RIFU 165K 4.89G 31.75 / 0.8886
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e
HR Bicubic SRResNet [63]
30.26/0.9095 31.86/0.9292

PSNR/SSIM

T
h

[N
DRealSR (x4): IMDN [29] ESRT [17] Ours
P1160776 31.78/0.9299 31.95/0.9312 32.22/0.9324

Visual comparisons on real-world datasets. (Including RealSRv3 and DRealSR).

I
w/o CIAM 1y

Fig.8.  Visual comparison of features with or without CIAM and CFGT. CIAM
is mainly composed of three RIFUs, and it serves to remove redundant features
from the image.

TABLE VI
EVALUATE THE EFFECTIVENESS OF CIAM

The bold entries indicate the best perfromance in each case.

for all metrics on both datasets. In addition, we give visual com-
parisons in Fig. 7. Both results on the DRealSR dataset and
the RealSRv3 dataset have demonstrated that our method has a
good recovery effect on textural features such as text and line
segments. This further demonstrates that our proposed CFIN is
also effective on real datasets.

V. ABLATION STUDIES

A. Network Investigations

1) The Effectiveness of RIFU: In RIFU, we use feature masks
to remove redundant features. To verify the effectiveness of this
mechanism, we remove the mask and provide the results in
Table IV. According to the table, we can see that the PSNR
value increases by 0.08 dB after using the masking mechanism
under the slight increase in the number of parameters. This ef-
fectively illustrates the effectiveness of the mechanism. As we
know, the max-pooling operation can filter redundant features,
and softmax can predict the probability distribution of different
features. These functions also can make the model focus on the
main features. To prove the effectiveness of the Gumbel-Softmax
(GS) in RIFU, we replace the Gumbel-Softmax function with
the max-pooling operation and softmax function, respectively.
According to Table V, we can see that the performance of the
models will drop from 31.75 dB to 31.71 dB when only using
the softmax function, and the performance will drop to 31.70 dB
when using the max-pooling operation. Therefore, we choose the

[ Modules [ Params | Multi-adds | Set5 [ Setl4 [ U100 |
CFIN+RCAB [66] 192K 17.35G 31.63 | 28.19 | 25.29
CFIN+IMDB [29] 148K 8.47G 31.54 | 28.19 | 25.23
CFIN+RFDB [30] 140K 777G 31.68 | 28.26 | 25.34
CFIN+LB [31] 145K 8.16G 31.66 | 28.22 | 25.33
CFIN+HPB [17] 150K 8.91G 31.59 | 28.21 | 25.32
CFIN+WDIB [33] 147K 5.26G 31.68 | 28.26 | 25.37
CFIN+CIAM (Ours) 188K 6.22G 31.87 | 28.30 | 25.44

The bold entries indicate the best perfromance in each case.

Gumbel-Softmax operation in the final model. The above exper-
iments verify the effectiveness and necessity of each mechanism
in RIFU.

Furthermore, to understand what part of the image our pro-
posed RIFU is focusing on, we visualize the feature maps for the
different layers of the model. Fig. 8(a) shows the feature map
comparison of the presence or absence of CIAM in the model. It
is worth noting that CIAM is composed of three RIFUs. As can
be seen from the figure, when CIAM is not present in the model,
the model focuses more on the flat areas between the butterfly
textures. However, the areas that determine the visual quality of
the image are the critical texture features, and such a focus is
not good enough to improve the quality of reconstructed images.
On the contrary, when the CIAM is introduced in the model, the
attention of the model shifts to complex texture features. This
proves that our proposed RIFU enables the model to focus more
on potentially useful information.

2) The Effectiveness of CIAM: To verify the effectiveness of
CIAM, we replace CIAM with some commonly used feature
extraction blocks in lightweight SISR models. It is worth noting
that we remove the Transformer stage in each CT block to speed
up the training process. According to Table VI, we can find that
when the model uses CIAM for feature extraction, the model
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TABLE VII
EVALUATE THE EFFECTIVENESS OF CGM

[ Modules [ Params | Multi-adds [ Set5 [ B100 [ U100 |
CFIN+GConv 197K 5.7981G 31.95 | 27.41 | 25.68
CFIN+Linear 198K 4.1104G 29.19 | 26.37 | 23.62
CFIN+CGM (Ours) 178K 4.1105G 32.14 | 2743 | 25.71

The bold entries indicate the best perfromance in each case.

TABLE VIII
EVALUATE THE EFFECTIVENESS OF THE CONTEXTUAL INTERACTION
MECHANISM WITHIN CFGT

. Set5
Scale | KV | Cross | Params | Multi-adds PSNR 7 SSIM
X T X T1775K | 4.1104G | 31.85/0.8900
wa | X | vV | 1778K | 4.1105G | 32.05/0.8928
v | X | 1775K | 4.1104G | 31.93 /0.8904
v v | 1778K | 4.1105G | 32.14/ 0.8940

The bold entries indicate the best perfromance in each case.

achieves the best results at the expense of a small increase in the
number of parameters. This fully demonstrates the effectiveness
of the proposed CIAM.

3) The Effectiveness of CGM: Context Guided MaxConv is
the basic unit in our Transformer stage, which is responsible for
reasoning and guiding the entire network. Compared with the
two basic units of convolutional and linear layers, our CGM can
adjust the weights adaptively and select reasonable contextual
information for reconstruction, which is not available in con-
volutional or linear units. To verify its importance, we replace
CGM with the linear layer and group convolution, respectively.
Meanwhile, we set their parameters as close as possible. Accord-
ing to Table VII, we can see that our proposed CGM achieves
better performance with fewer parameters and Multi-adds. This
fully validates the excellence and effectiveness of the proposed
CGM.

4) The Effectiveness of CFGT: Compared with traditional
Transformers, CFGT has two main differences in structure:
the first is K, V for contextual communication; the second is
cross-scale information exchange brought by CGM with differ-
ent receptive fields. To assess the effectiveness of such a design,
we provide a set of ablation experiments in Table VIII, where
KY represents the interaction of vectors K and V' between the
upper and lower CGA, and Cross represents the cross-receptive
fields mechanism brought about by setting K of different sizes
in CGA. It can be seen that our architectural design solution
can significantly improve the performance of the model with
almost no additional computational cost. Meanwhile, we make
an efficiency trade-off study on the number of CFGTs. In Fig. 9,
CFGT-Nindicates that the model contains N CFGTs while keep-
ing the CNN part unchanged. It can be seen that the model with
8 CFGTs has the best performance, so we select 8 CFGTs in
CFIN. In Table IX, OnlyT indicates that only the Transformer
part of the CFIN is retained. Compared with other advanced
lightweight SISR models, it can be seen that our CFGT achieves
promising results with only 91 K parameters. This verifies the
effectiveness and advancement of CFIN. In Fig. 10, we also
compare OnlyT with several Transformer-based SISR methods.
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Fig. 9. Efficiency trade-off of CFGT on Set5(x4).
TABLE IX
COMPARISON OF CFGT WITH OTHER METHODS
[ Modules [ Params | Multi-adds [ Set5 [ Setl4 [ BI00 | UI00 |

PAN [68] 272K 28.2G 32.13 | 28.61 | 27.59 | 26.11
MAFFSRN [50] | 441K 19.3G 32.18 | 28.58 | 27.57 | 26.04
RFDN [30] 550K 31.6G 32.24 | 28.61 | 27.57 | 26.11
FDIWN-M [33] 454K 19.6G 32.17 | 28.55 | 27.58 | 26.02
OnlyT (Ours) 91K 4.5G 32.33 | 28.61 | 27.58 | 26.08

The bold entries indicate the best perfromance in each case.

The study of CFGT with other Transformer
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Fig. 10.  Performance comparison of CFGT with other Transformer modules
on Set5(x4).

It is worth noting that we only choose the Transformer part of
these methods and use a small model for ablation studies. As
can be seen from Fig. 10, our approach has better performance
with less computational consumption.

Furthermore, Fig. 8(b) illustrates the effect of the presence
or absence of CFGT in the model on the area of concern of the
model. It can be seen from the figure that the model only focuses
on the part of the contour texture when there is no CFGT, while
the model deepens its focus on the contour texture when there is
CFGT, and also focuses on some of the pixel points around the
contour. This also demonstrates that our proposed CFGT can
be combined with contextual information on important image
regions for image reconstruction. These experiments all validate
the effectiveness of the proposed CFGT which can better convey
contextual information.
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TABLE X
EVALUATE THE FEASIBILITY OF COMBINING CNN WITH TRANSFORMER
. Set5 Set14 BSD100 Urban100 Mangal09

Scale | Methods Params | GPU Memory | Time | —5erp =7 osin T PSNR /7 SSIM | PSNR / SSIM | PSNR / SSIM | PSNR / SSIM
Pure-CNN 720K 3845M 0.016s | 32.12/0.8939 | 28.52 7 0.7796 | 27.52 7 0.7343 | 25.96 / 0.7810 | 30.29 / 0.9057

x4 | Pure-Transformer | 94K 11549M 0.038s | 32.48 /0.8980 | 28.69 / 0.7835 | 27.64 /0.7385 | 26.24 / 0.7896 | 30.62 / 0.9102
CFIN (Ours) 699K 11453M 0.035s | 32.49 / 0.8985 | 28.74 / 0.7849 | 27.68 / 0.7396 | 26.39 / 0.7946 | 30.73 / 0.9124

The bold entries indicate the best perfromance in each case.
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Fig. 11.  Visualization of different numbers of CT blocks.

5) Visual Analysis of CT Block: To explore which regions
of the image the CT Block that CNN combines with Trans-
former will focus on, we present the visual heatmaps of differ-
ent numbers of CT Blocks in Fig. 11. Among them, the color
close to red in the image represents the part where the attention
is focused. So we can see that in the absence of a CT Block,
the attention is only focused on a small number of texture fea-
tures, and as the number of CT Blocks increases, more fine-
grained features in images are paid attention to. It also indicates
that CT Blocks allow the model to progressively focus on the
surrounding fine-grained pixels that the model needs to recon-
struct the texture when recovering important texture features.
This means that more CT Blocks make the model tends to re-
cover more accurate detailed features, which is conducive to
image restoration.

B. Complementarity of CNNs and Transformers

CNN can be used to extract local features, and Transformer
has powerful global modeling capabilities, both of which are cru-
cial for high-quality image restoration. In Table X, we provide a
comparison of CFIN with Pure-CNN and Pure-Transformer ver-
sions. Among them, Pure-CNN and Pure-Transformer represent
variant models with only the CNN part or the Transformer part,
respectively. For a fair comparison, the number of parameters
of Pure-CNN is set as close to CFIN as possible, and the mem-
ory consumption of Pure-Transformer is set as close to CFIN as
possible. It can be seen from the table that neither Pure-CNN
nor Pure-Transformer cannot achieve the performance of the
original CFIN. When using CNN alone, it can reduce the con-
sumption of GPU memory, but it is difficult to improve the
performance of the model even with more parameters. When
using the Transformer alone, the parameters of the model can
be greatly reduced, but the consumption of GPU memory will
rise rapidly, and its performance still hardly exceeds the orig-
inal CFIN, which is not conducive to the practical application
of the model. Therefore, we chose the hybrid model of CNN
and Transformer, which can achieve a good balance between the

32.51 #CFIN(Ours)
241 prFN
323 DRSAN
m ~ atticeNet+
) R&PN  FDIWN
% 3221 gmasrRN - ®'MDN @MAFFSRN-L AWSRN-M®
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32.01
®MADNet
319 : : , | ; : .
500 600 700 800 900 1000 1100 1200 1300

Number of parameters (K)

Fig. 12.  Model performance and size comparison on Set5 (x4). Obviously,
our CFIN achieves the best balance between model performance and size.

size, GPU memory consumption, and performance of the model.
Therefore, we can draw a conclusion that CNN and Transformer
are complementary, and the combination of these two parts is
feasible.

C. Model Complexity Analysis

We present the trade-off between our CFIN and other ad-
vanced SISR models in terms of PSNR, parameter amount, and
inference time in Fig. 1. Obviously, CFIN attains the best perfor-
mance among models with similar execution times and achieves
the best balance in model complexity, inference time, and per-
formance.

InFigs. 12 and 13, we also provide the parameter, Multi-Adds,
and performance comparisons of CFIN with other advanced
SISR models. It can be seen that our CFIN also achieved the
best PSNR results under the premise of comparable calcula-
tions. Therefore, we can draw a conclusion that our CFIN is a
lightweight and efficient model, which achieves the best balance
between the model size and performance.

VI. DISCUSSION

In the proposed model, we use some matrix multiplication in
our model, so the training memory is slightly larger. However,
this does not mean the proposed method is meaningless. Because
our method, like most other methods, can be trained and tested
on a single NVIDIA RTX 2080Ti GPU and has fewer computa-
tional costs and faster inference during testing, it is friendly to
the deployment of the model on the mobile device. We also note
that some researchers [17] claimed that their methods can greatly
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Fig. 13.  Model performance and Multi-Adds comparison on Urban100 (x2).

Obviously, our CFIN achieves the best balance between model performance and
Multi-Adds.

reduce the memory required for Transformer training. In addi-
tion, due to the fact that the original image details are severely
corrupted under a large sampling factor, our method still can not
recover the fine edge texture details well. Fortunately, we also
note that partly pre-training-based methods [7], [10] are able
to use prior knowledge to mitigate the above problem. In our
future works, We will further explore the effectiveness of these
strategies and introduce them into CFIN to further improve the
model.

VII. CONCLUSION

In this paper, we proposed a lightweight and efficient Cross-
receptive Focused Inference Network (CFIN) for SISR. The
network consists of sequentially cascaded CT Blocks, each
composed of a Cross-scale Information Aggregation Mod-
ule (CIAM) and a Cross-receptive Field Guide Transformer
(CFGT). By removing redundant features and combining con-
textual information to dynamically perform image restoration,
our method can effectively fuse the advantages of CNN and
Transformer. Extensive experiments have shown that our CFIN
can effectively combine contextual information for fine-grained
learning, which strike a good balance between the performance
and complexity of the model and outperform existing state-of-
the-art methods.
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