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Abstract—Lightweight semantic segmentation plays an essential
role in image signal processing that is beneficial to many multimedia
applications, such as self-driving, robotic vision, and virtual reality.
Due to the powerful capability to encode image details and
semantics, many lightweight dual-resolution networks have been
proposed in recent years for semantic segmentation. In spite
of achieving remarkable progresses, they often ignore semantic
context ranged from different scales. Furthermore, most of them
always neglect the object boundaries, serving as a significant
assistance for lightweight semantic segmentation. To alleviate these
problems, this paper develops a Boundary-guide dual-resolution
lightweight network with multi-scale Semantic Context, called
BSCNet, for semantic segmentation. Specifically, to enhance the
capability of feature representation, an Extremely Lightweight
Pyramid Pooling Module (ELPPM) is designed to capture multi-
scale semantic context at the top of low-resolution branch of
BSCNet. In addition, to increase feature similarity of the same
object while keeping feature discrimination of different objects,
pixel information is propagated throughout the entire object area
using a simple Boundary Auxiliary Fusion Module (BAFM), where
the predicted object boundaries are served as high-level guidance
to refine low-level convolutional features. The comprehensive
experimental results have demonstrated that our BSCNet is
simple and effective, achieving state-of-the-art trade-off in terms
of segmentation accuracy and running efficiency on CityScapes,
CamVid, and KITTI datasets.
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I. INTRODUCTION

L IGHTWEIGHT semantic segmentation, as a fundamen-
tal and challenging task in the field of signal processing

community, plays a vital role in many real-world multimedia
applications, such as self-driving, robotic vision, and virtual re-
ality. The goal of semantic segmentation is to assign a unique
semantic category label to each pixel in images. With the rapid
development of convolutional neural networks (CNNs), various
advanced high-accuracy CNNs [1], [2], [3], [4], [5] have been
proposed for image semantic segmentation. In spite of achiev-
ing remarkable progresses, those high-accuracy networks often
involve heavy model size and huge amount of computational
costs, which are unsuitable for many real-world applications
that require online estimations and real-time decisions [6], [7].

To this end, many researchers prefer to design lightweight net-
works [6], [7], [8], [9], leveraging segmentation accuracy and
implementing efficiency at the same time. Most of them employ
lightweight encoder-decoder architecture in a single path man-
ner [6], [7], where the convolutional features are firstly down-
sampled in encoder, and then gradually recovered in decoder.
Among them, depth-wise [7], group-wise [10] and factorized-
wise [6] convolutions are widely utilizes to compress network
size. Considering image details are hard to accurately recover
via deconvolution and upsampling operators in decoder, some
recent studies [8], [9], often called dual-resolution networks,
design an extra parallel high-resolution branch to maintain spa-
tial detailed information. For instance, BiSeNet [8] divides the
network into spatial and context paths separately, both of which
involve lightweight architecture. BiSeNetV2 [9], as an extension
of [8], proposes a finer way to fuse features from two branches,
leading to the great reduction of model size and computational
costs. Although these advanced and lightweight networks have
achieved impressive segmentation results, they inherently suffer
from following limitations:
� Whether single-path [11], [12] nor dual-path lightweight

networks [8], [9], they often capture contextual features
solely relying on single scale clues. Correctly classifying
image pixels, however, not only depends on short-ranged
low-level details, but also may rely on long-ranged high-
level semantics. Although some high-accuracy networks
have integrated intermediate convolutional features [1], [2]
via element-wise addition or concatenation, such fusion

1520-9210 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on April 26,2024 at 02:07:07 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7894-7929
https://orcid.org/0009-0003-4503-7915
https://orcid.org/0000-0002-3950-1844
https://orcid.org/0000-0002-6054-7556
https://orcid.org/0000-0001-5241-7703
https://orcid.org/0000-0001-9794-3221
mailto:quan.zhou@njupt.edu.cn
mailto:1020010524@njupt.edu.cn
mailto:csgwgao@njupt.edu.cn
mailto:kangbin@njupt.edu.cn
mailto:kangbin@njupt.edu.cn
mailto:ouweihuahust@gmail.com
mailto:ouweihuahust@gmail.com
mailto:dr.huimin.lu@ieee.org


7888 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024

Fig. 1. Overall architecture of BSCNet. More specifically, the BSCNet is mainly composed of high-resolution branch (HRB, marked by purple dashed box) and
low-resolution branch (LRB, marked by blue dashed box). The ECCM, ELPPM, BFM, and BAFM stand for efficient compact convolutions module, extremely
lightweight Pyramid pooling module, bilateral fusion module, and boundary auxiliary fusion module, respectively. (Best viewed in color).

strategy is too weak to represent multi-scale context. The
alternative approaches usually utilize image pyramid [13]
or self-attention [14], [15] to encode multi-scale context,
yet they both suffer from heavy computations that are un-
suitable for lightweight semantic segmentation.

� As an important auxiliary clue, object boundary informa-
tion has been widely used to develop recent high-accuracy
segmentation networks [16], [17], where object shapes are
well delineated. These networks, however, require to de-
sign an extra modules [18] or sub-networks [16], [19] to
learn boundary cues, inevitably leading to great increase
of model size and computational costs. As a result, how
to encode object boundaries as an additional assistance in
an effective and efficient manner still remains unclear for
lightweight semantic segmentation.

This paper makes an effort to address these limitations by de-
veloping a dual-resolution network, named BSCNet, leveraging
multi-scale semantic context and object boundary auxiliary for
lightweight semantic segmentation. As shown in Fig. 1, BSC-
Net also inherits dual-resolution architecture [8], [9], includ-
ing high-resolution branch (HRB) and low-resolution branch
(LRB). HRB maintains low-level fine details as well as LRB
encodes high-level image semantics. Instead of using inverted
bottlenecks in BiseNet families [8], [9], our BSCNet is mainly
composed of a series of Efficient Compact Convolution Modules
(ECCMs), which employ multiple depth-wise convolutions to
enlarge receptive fields, while remaining smaller computational
costs. In addition, different from BiseNets [8], [9] that extract
convolution features in two branches independently, two Bilat-
eral Fusion Modules (BFMs) are employed to enhance informa-
tion communication between HRB and LRB, benefiting to the
information flow among features that have variable-resolutions.

To effectively investigate multi-scale semantic context in an
efficient manner, as shown in Fig. 1, an Extremely Lightweight
Pyramid Pooling Module (ELPPM) is designed on the top of
LRB. Inspired from PSPNet [2], ELPPM employs pyramid fea-
ture representation to capture semantic context from different

scales. It is worthy that ELPPM designs a global-to-local con-
text fusion strategy that integrates neighbouring scale features
step-by-step, rather than directly employing simple concatena-
tion operation [2] that is too weak to merge convolution features
with different resolutions. The details structure of ELPPM is
also motivated from Res2Net [20] that investigates multi-scale
information via group-wise channel convolution. Nevertheless,
ELPPM achieves more powerful representation capability from
resolution perspective, which harvests multi-scale semantic con-
text from hierarchical pyramid pooling features. Most impor-
tantly, ELPPM is computationally efficient as it is performed
only once, instead of stacking many times in backbone as well
as involving heavier 3× 3 convolutions used in Res2Net [20].

To explore object boundary cues, BSCNet employs a simple
Boundary Auxiliary Fusion Module (BAFM) using estimated
boundaries as semantic guidance to help lightweight semantic
segmentation. More specifically, a binary boundary map is first
predicted through a boundary detection head. To increase the
feature similarity of the same object while keeping the feature
discrimination of different objects, we explore to propagate in-
formation throughout entire object area under the control of the
estimated boundary map. As shown in Fig. 1, there are several
merits using BAFM. Firstly, as image fine details have already
been discarded in deep convolution layers, the shallow layers
often contain more richer object shape clues that complement
to high-level semantics. Secondly, in contrast to some previous
methods [18], [19] that employ additional decoder network or
complicated module [16] to learn object boundaries, BAFM still
keeps a lightweight design that requires small amount of model
parameters and computational costs. In nutshell, the major con-
tributions of our paper are three-fold:
� A lightweight pyramid module, ELPPM, is designed to

leverage multi-scale context representation and computa-
tional efficiency. Instead of directly integrating intermedi-
ate convolution features [1], [2] or self-attention [14], [15],
our ELPPM adopts a more powerful pyramid feature rep-
resentation that fuses multi-scale semantics step-by-step.
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Fig. 2. Lightweight architecture comparison between (a) single-path encoder-
decoder networks, (b) dual-path networks, and (c) our method. (Best viewed in
color).

Even so, ELPPM is computationally cheap as it only re-
quires very few model size and computational costs.

� Boundary cues are employed in BSCNet as an essential
assistance for lightweight semantic segmentation. Through
feature propagation, BAFM explicitly encourages feature
consistency inside the area of an object, thus implicitly
achieving feature inconsistency on both sides of estimated
boundaries. Although boundary clues have been widely-
used for high-accuracy segmentation network [21], [22],
to our best knowledge, it is rarely explored for lightweight
semantic segmentation.

� We test BSCNet on three widely-used semantic seg-
mentation datasets: Cityscapes [23], CamVid [24], and
KITTI [25]. The exhausted experimental results demon-
strate that our method achieves state-of-the-art trade-off
in terms of segmentation accuracy and running efficiency.
Specifically, BSCNet achieves 78.3%, 79.8%, and 52.4%
mIoU on three datasets, respectively, with only 1.5 M
model size and 96 FPS and 319 FPS inference speed for
1024× 2048 and 960× 760 input images, respectively.

The remainder of this paper is organized as follows.
Section II briefly reviews the related works. The detailed archi-
tecture of BSCNet is introduced in Section III. Section IV shows
the experimental settings and results on all datasets. Finally, the
concluding remarks and future work are given in Section V.

II. REALTED WORK

To adapt to real-time applications, a vast number of methods
have been proposed to compress semantic segmentation net-
works, such as quantization [26], pruning [27], knowledge dis-
tillation [28], and lightweight model design [8], [9], [29]. As our
method belongs to the final category, we briefly review related
work in this direction.

A. Lightweight Semantic Segmentation

The existing lightweight semantic segmentation networks can
be roughly divided into two categories: single-path [6], [29]
and dual-path networks [8], [9]. As shown in Fig. 2(a), the first
category often adopts compact convolutions using lightweight
encoder-decoder architectures [6], [29], where encoder produces
feature representations with repeated spatial reductions, while

decoder restores feature resolutions step-by-step to predict seg-
mentation outputs. For instance, SegNet [29] employs a sym-
metrical encoder-decoder structure with skipped connections to
achieve high speed. In [30], a parallel complement network is
designed for segmenting road scenes. ERFNet [6] decomposes
a 3× 3 standard convolution into two successive 1D-factorized
convolutions (e.g., 3× 1 and 1× 3). ESPNet [31] adopts spa-
tial pyramid with dilated convolutions to improve running effi-
ciency. ESPNetV2 [11], as an extension of [31], proposes ex-
tremely efficient spatial pyramid unit to enlarge receptive fields.
STDCNet [32] designs short-term dense concatenates module
to obtain scale-variant receptive fields. HyperSeg [33] com-
bines auto-encoders and hyper-networks for lightweight seman-
tic segmentation. An alternative approach of single path archi-
tecture is designing lightweight Transformers [34], [35], [36]
for real-time semantic segmentation. For example, CvT [37] in-
corporates depth-wise convolution into Transformer backbone
to compute multi-head self-attention. LETNet [38] designs an
efficient U-shape network that inherits the merit of Transformer
and CNN. In [35], a pure Transformer backbone is designed to
capture hierarchical features using shifted windows. PVT [36]
and P2T [34] adopt the pooling operation to accelerate inference
speed by reducing the number of input tokens.

On the other hand, as illustrated in Fig. 2(b), the second
category usually employs compact dual-resolution architecture,
where the resolution of LRB is gradually reduced as usual, while
the resolution of HRB is shrank at first, and then remains un-
changed to provide rich spatial details as a supplement. For ex-
ample, the BiSeNet families [8], [9] decouple lightweight net-
work into spatial and context paths separately, parallelly ab-
stracting high-level context semantics and low-level spatial de-
tails. ICNet [13] utilizes image pyramid as inputs and builds
cascaded networks that incorporate high-level label guidance.
Lite-HRNet [39] is another multi-branch network, where an
1× 1 convolution is replaced by cross-resolution weighting
module in HRNet [40]. MLFNet [41] encodes target contours
using a spatial compensation branch. In [42], a triple branch
segmentation network is designed by connecting CNNs and
proportional-integral derivative controllers.

In contrast to these advanced and lightweight networks that
ignore to take object boundary information into account, our
BSCNet, as exhibited in Fig. 2(c), designs a BAFM to investi-
gate object boundary clues. In addition, ELPPM harvests various
scale semantic context that show enough evidence to make a dis-
criminative decision for each pixel. Finally, whether BAFM nor
ELPPM, they are both lightweight and computationally efficient
so that BSCNet satisfies the requirement of real-time applica-
tions.

B. Multi-Scale Context Fusion

Capturing context information plays a significant role for se-
mantic segmentation [1], [2]. Therefore, there are vast number
of high-accuracy [1], [2] and lightweight networks [8], [9], [11]
used to combine multi-scale context clues.

In high-accuracy networks [1], [2], the most commonly-used
method to capture contextual cues is integrating feature maps
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from intermediate layers. For instance, FCN [1] captures con-
text using skip connections, where high-level semantics from
deep layers are combined with the low-level details from shallow
layers. SegNet [29] designs a mirror encoder-decoder structure
to harvest multi-scale context, where the convolution features
in encoder are duplicated to decoder. Another methods [15],
[43] enlarge receptive fields to capture long-ranged contex-
tual dependencies. One solution is to use large kernel size or
dilated convolutions. For example, RepLKNet [44] captures
context using convolution filters with 31×31 kernel size. The
atrous dilated convolution is introduced in [43], [45] to increase
the sampling steps in convolution. The alternative solution is
self-attention [14] that has shown great success in natural lan-
guage processing. The non-local network [14] firstly introduces
self-attention to CNNs for capturing global context, where the
response at each position is a weighted sum of all other positions.
DANet [15] captures long-ranged interactions using spatial- and
channel-wise attentions. In [3], a channel-wise attention is well
explored to capture global context. ANNet [46] proposes spatial
pyramid pooling in [14] to accelerate inference speed.

On the other hand, lightweight networks often integrate
various-scale context using an extra designed modules [11], [32].
Some approaches [31], [32] prefer to design context capturing
module in backbone. For example, ESPNet families [11], [31]
adopt spatial pyramid to learn the representations from a larger
receptive field. STDCNet [32] adopts a dense-like structure to
collect multi-scale context with scalable receptive fields. The al-
ternative approaches [8], [9] fuse context information at the end
of backbone. For instance, BiSeNetV1 [8] proposes a feature fu-
sion module to integrate the high-level and low-level cues from
context and spatial path. BiSeNetV2 [9] proposes a aggregation
layer that enhances mutual connections between detailed and
semantic feature representations.

In contrast to high-accuracy networks that always involve
huge computational costs to encode context cues, our ELPPM
leverages powerful multi-scale context representation and im-
plementation efficiency. Similar to [9], ELPPM is also con-
ducted only once at the end of backbone, yet employing a more
lightweight design that integrates various-resolution features
step-by-step from one input, instead of exploring correlations
among multiple inputs [8], [9].

C. Object Boundary for Semantic Segmentation

As a fundamental low-level visual task in computer vision,
boundary detection has been widely-used to help semantic seg-
mentation with the development of CNNs [16], [17], [21]. For
instance, OBGNet [21] designs a fully convolution network
(FCN) that integrates object boundaries and shapes for seman-
tic segmentation. In [19], object shapes are predicted using an
equipotential learning method. GSCNN [16] describes a dual
streams network, where shape stream is used to extract object
boundaries, while segmentation stream is used to produce seg-
mentation results. RPCNet [17] proposes an iterative pyramid
context module to couples semantic segmentation and bound-
ary detection. In contrast to design an additional edge detec-
tion branch to estimate object boundaries, some methods prefer

to directly produce boundary maps using pre-trained edge de-
tection networks [47], [48], [49], [50]. For example, in [47],
the authors integrate side outputs of different convolution lay-
ers to predict object boundary. Deng et al. [48] designs a loss
function that is capable of penalizing the distance of contour
structure similarity between edge prediction and ground-truth.
FCL-Net [49] exploits semantic information from deep layers
to facilitate fine-scale feature learning. In [50], a PNT-Edge net-
work learns a pixel-wise transition to detect edges under the
scenario of noisy labels. The final alternative approaches that
investigate object boundaries mainly focus on post-processing,
scuh as DeepLab models [45] that restrict segmentation outputs
through a fully connected conditional random fields (CRFs).

Unlike these high-accuracy networks [16], [17], [19], [21]
that always have heavy model size and huge computational
overheads, our BSCNet aims at exploring boundary information
in a lightweight manner. Specifically, the proposed lightweight
BAFM utilizes the estimated binary boundary map to guide
convolution features, leading to the improvement of segmen-
tation performance with limited increase of model parameters
and computational costs.

III. METHOD

This section first elaborates on the detailed architecture of
BSCNet, together with its core units ECCM and BFM. There-
after, we introduces ELPPM and BAFM, used to extract multi-
scale context and object boundaries as additional assistance.

A. Network Architecture

The overall architecture of BSCNet is depicted in Fig. 1.
BSCNet still inherits the dual-resolution architecture [8], [9],
where HRB remains low-level fine details as well as LRB cap-
tures high-level semantic cues. Except ELPPM and BAFM, two
paths are mainly constructed by a series of ECCMs and two
BFMs. ECCM can explore larger receptive fields with very fewer
model size and smaller computational costs. On the other hand,
BFM strengthens information exchange between two paths us-
ing cross-resolution feature integration.

The detailed structure of BSCNet backbone is given in Table I.
Similar to traditional single-path segmentation network [6], [29],
LRB employs a stem and multiple ECCMs wtih stride 2, gradu-
ally producing convolution feature maps that have resolutions of
1
2 , 1

4 , 1
8 , 1

16 , 1
32 and 1

64 with respect to input image. On the other
hand, HRB keeps a relatively high resolution of LRB, maintain-
ing unchanged feature resolution that is 1

8 of input size. Among
two paths, two BFMs are used to enhance cross-resolution fea-
ture integration and communication. At the top of LRB, ELPPM
is used to encodes multi-scale semantic context, whose resolu-
tion is enlarged 8× with equal dimension for exactly integrat-
ing with the output of HRB, used to predict boundary map that
are helpful to accurately delineated object shapes. As shown in
Fig. 1, the proposed BAFM is added at the end of entire BSC-
Net to estimate final segmentation outputs, receiving the super-
vision from the associated ground truths. Furthermore, as pre-
liminary features are always inaccurate and coarse [2], [45], we
introduce an auxiliary supervision head to learn more accurate
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TABLE I
DETAILED ARCHITECTURE OF BACKBONE IN BSCNET

Fig. 3. Overview of the units used in backbone of BSCNet. (a) ECCM;
(b) Stride ECCM (s = 2); And (c) BFM. The blue and purple arrows in (c)
are consistent with the information flow shown in Fig. 1. (Best viewed in color).

features from shallow convolution layers. Next, we introduce
ECCM and BFM in details, respectively. ECCM. As illustrated
in Fig. 3(a), ECCM follows a residual structure, including trans-
formed and identity branch that leverage compact convolutions
and residual connections. The transformed branch serves as a
residual function, while the identity branch is used to facilitate
end-to-end model training. In transformed branch, two 3× 3
depth-wise convolutions are sequentially adopted to enlarge re-
ceptive fields, yet resulting in the independent features among all
channels. Thus an 1× 1 point-wise convolution is followed, re-
covering channel dependencies using a linear combination. Note
the two successive 3× 3 depth-wise convolutions achieve same
receptive field of 5× 5 depth-wise convolutions [51]. However,
ECCM is more lightweight, as it only requires 2× 3× 3 = 18
parameters, while [51] needs 5× 5 = 25 parameters. Fig. 3(b)
also exhibits the stride version of ECCM, used to reduce fea-
ture resolutions and synchronously increase channel numbers.
Concretely, two 3× 3 stride depth-wise convolutions are first
utilized in both branches, respectively, resulting in the reduced
2× resolution of outputs. Thereafter, the channel numbers of
the outputs are expanded 2×, fulfilled by the following 1× 1
point-wise convolutions in two branches.

Fig. 4. Detailed architecture of ELPPM. (Best viewed in color).

BFM. As depicted in Fig. 3(c), BFM serves as a bridge to
enable communications between HRB and LRB. Let SH

in ∈
RH×W×C and SL

in ∈ R
H
n ×W

n ×nC , n ∈ {2, 4}, be inputs of
BFM, and SH

out ∈ RH×W×C and SL
out ∈ R

H
n ×W

n ×nC be outputs
of BFM, respectively, where H ×W stands for input resolu-
tion, andC denotes channel number. Concretely, SH

in first passes
through an 1× 1 convolution, and then downsampled with equal
dimensions for following fusion with SL

in. On the other hand,
SL
in is fed into a 3× 3 convolution, and then upsampled with

equal dimensions for next feature integration with SH
in. Finally,

the combined features sequentially undergo a depth-wise 3× 3
and point-wise 1× 1 convolutions, producing the outputs SL

out

and SH
out for LRB and HRB, respectively.

B. ELPPM

Harvesting context information within different ranges plays
a significant role for lightweight semantic segmentation [8], [9].
Some previous methods [1], [2] aggregate intermediate convo-
lution features that have different resolutions, yet they are too
weak to capture multi-scale context. Lots of alternative efforts
have been proposed to encode multi-scale context by enlarg-
ing respective fields [43], [44], or computing dense attention
maps [15], [46]. These methods, however, require large amount
of computations that are not suitable for lightweight semantic
segmentation. In order to address these limitations, this sec-
tion describes ELPPM that leverages computational efficiency
and multi-scale contextual representations. More specifically,
ELPPM adopts a simple yet powerful hierarchical feature pyra-
mid to represent multi-scale context, facilitating context fusion
in a global-to-local manner. To reduce model size and accelerate
computing speed, the depth-wise convolution is used in ELPPM
to integrate neighboring-scale context features step-by-step.

The detailed structure of ELPPM is shown in Fig. 4. Given
input features Fin ∈ RHi×Wi×Ci , where Hi, Wi, and Ci stand
for height, width, and channel number of Fin, respectively, our
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ELPPM begins at an 1× 1 convolution that projects Fin into
a low-dimensional embedding Fo

in ∈ RHi×Wi×Co , where Co is
set as 1

4Ci, empirically. In order to produce hierarchical repre-
sentations, a series of adaptive stride pooling operations Pi

s(·)
are employed, parallelly producing hierarchical features F i

mid,
i ∈ {1, 2, 3} that have resolutions of 1

2 , 1
4 , and 1

8 with respect to
Fo
in. Moreover, to capture global context, we also use a global

pooling operation Pi
g(·), producing an additional features F4

mid

that has the resolution of 1× 1× Co to represent the entirety of
Fo
in:

F i
mid =

{
Pi

s(F
o
in), i ∈ {1, 2, 3};

Pi
g(F

o
in), i = 4;

(1)

Given these intermediate features F i
mid that encode multi-scale

semantic context, a global-to-local fusion strategy is designed
to sequentially integrate neighboring scale context. Taking the
combination of F3

mid and F4
mid into account, the resolution of

F4
mid has to be firstly enlarged with the equal dimensions of

F3
mid using bilinear upsampling operation U(·). Then, the en-

larged features F4
agg ∈ R

Hi
8 ×Wi

8 ×Co are combined with F3
mid

by element-wise addition, which is ready for following 3× 3
depth-wise convolution DC(·). The output of depth-wise con-
volution are further upsampled, producing aggregated features

F3
agg ∈ R

Hi
4 ×Wi

4 ×Co used for next integration. The entire pro-
cedure is repeatedly performed until all scale semantic context
features are encoded step-by-step:

F i
agg =

{
U(DC(F i+1

agg ⊕ F i
mid)), i ∈ {1, 2, 3};

U(F i
mid), i = 4;

(2)

Note the depth-wise convolution leads to the independence
among feature channels during the whole process, thus F1

agg

has to be fed into an 1× 1 convolution, producing features F̂agg

that the channel dependencies are well recovered. Finally, the
entire context fusion process serves as a residual function that
facilitates training ELPPM in an end-to-end manner:

Fout = Fo
in ⊕ F̂agg, (3)

Benefiting from the pyramid feature representation and
global-to-local context fusion strategy, ELPPM is able to se-
quentially capture multi-scale semantic context in an efficient
manner. In contrast to Res2Net [20] that encodes multi-scale
context using channel-wise group convolution and integration,
our ELPPM investigates hierarchical semantic context from the
perspective of resolution-wise convolution and combination.
Furthermore, ELPPM employs depth-wise convolutions to fuse
neighboring scale semantic context, leading to the great reduc-
tion of model size and computational costs.

C. Lightweight Segmentation With Boundary Assistance

In spite of widely-used for existing high-accuracy semantic
segmentation networks [21], [22], object boundaries are rarely
explored for lightweight semantic segmentation. Thus this sec-
tion focuses on how does BAFM improve the segmentation out-
puts with the aid of object boundaries. We first elaborate on

Fig. 5. Detailed architecture of BAFM is shown in (a), which consists of
(b) convolution feature fusion block (CFFB) and (c) boundary-guided feature
propagation block (BFPB). (Best viewed in color).

the detailed architecture of BAFM, and then introduce the loss
functions used to supervise object boundary estimations.

1) BAFM: The recent segmentation networks with boundary
auxiliary can be roughly divided into two categories. One is em-
ploying boundary auxiliary head to guide internal features [17],
[19], while the others introduce binary boundaries into segmen-
tation networks [16], [21], [52]. Following second one, we utilize
binary boundaries as high-level semantic guidance to enhance
object discriminative capability by feature propagation, yet with
lightweight design that is restricted by very few model parame-
ters and computational complexity.

As can be seen in Fig. 5, our BAFM has three inputs: FS ,
FD, and FB . Specifically, low-level features FS ∈ RH×W×C

comes from the shallow layer of BSCNet that contains richer
object shape details, where W , H , and C stand for feature
width, height, and channel numbers, respectively. On the con-
trary, FD ∈ RH×W×2C denotes high-level features, produced
by merging the outputs of ELPPM and HRB. Finally, FB ∈
RH×W×1 represents a one-channel binary feature map, esti-
mated from FD via an auxiliary boundary supervision head. As
shown in Fig. 5(a), BAFM composes of two components: convo-
lution feature fusion block (CFFB) and boundary-guided feature
propagation block (BFPB). Immediately below, we elaborate on
the details of these two blocks.

CFFB. The detailed structure of CFFB is illustrated in
Fig. 5(b). CFFB first fuses the deep layer features FD and shal-
low layer features FS , and then reweighted by channel-wise
attention [53]. More specifically, two inputs FD and FS are con-
catenated together, and then fed into an 1× 1 convolution f(·),
producing an intermediate feature map Ff ∈ RH×W×C :

Ff = f(FD � FS), (4)

where � indicates concatenation operation. Next, a squeeze at-
tention [53] is employed to encode channel importance, and
utilized to reweight intermediate feature Ff . As illustrated in
Fig. 5(b), Ff is directly fed into a global average pooling Pg(·)
to represent global entirety. Thereafter, a sigmoid function σ(·)
is employed as usual to produce a channel-wise attention maps
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A ∈ R1×1×C , used to reweight intermediate feature Ff to pro-
duce the output F̂ ∈ RH×W×C of CFFB:

F̂ = Ff ⊗ A = Ff ⊗ σ(Pg(Ff )), (5)

where ⊗ stands for channel-wise multiplication.
BFPB. The goal of BFPB is to propagate information among

feature maps. Undifferentiated propagation, however, would
make the features assimilated, leading to the smooth representa-
tion that weakens the discrimination power. To classify features
in different objects and stuff for lightweight semantic segmen-
tation, it is beneficial to improve the feature similarity of the
same object while keeping the feature discrimination of differ-
ent objects. Therefore, we introduce the boundary information
into feature propagation to control the information flow between
different objects. As shown in Fig. 5(c), with the guide of es-
timated binary boundaries, the information is only allowed to
pass through pixels belonging to the same segment, without in-
terference from pixels of other objects. The detailed propagation
process is presented below.

As illustrated in Fig. 5(c), given the output F̂ of CFFB and
predicted binary boundaries FB , we first produce a masked
boundary-aware features F̂M , where the pixels with red color
indicates estimated boundary pixels. As feature propagation has
to ergodic all positions within one segment, one specific pixel
will receive different information if we propagate features from
different directions. To achieve high computational efficiency,
the features of F̂M are propagated horizontally and vertically in
a bi-directional manner, producing four propagated feature maps
F̂LR
H , F̂RL

H , F̂TB
V , and F̂BT

V that represent propagated directions
from left to right, right to left, top to bottom, and bottom to top,
respectively. Let u(x, y) be a pixel with horizontal and verti-
cal coordinate (x, y), uL(xL, y) and uR(xR, y) be the most left
and right pixels in the predicted boundary that share the same
vertical coordinate of u(x, y), where xL < x < xR. Similarly,
vT (x, yT ) and vB(x, yB) are the most top and bottom pixels in
the estimated boundary that share the same horizontal coordinate
of u(x, y), where yT < y < yB . Then, to enhance feature simi-
larity in the same segment, the propagation process for u(x, y)
are defined as the average mean of feature responses from four
directions:

F̂LR
H (x, y) =

F̂M (x, y) + (x− xL − 1)F̂LR
H (x− 1, y)

x− xL

F̂RL
H (x, y) =

F̂M (x, y) + (xR − x− 1)F̂RL
H (x+ 1, y)

xR − x

F̂TB
V (x, y) =

F̂M (x, y) + (y − yT − 1)F̂TB
V (x, y − 1)

y − yT

F̂BT
V (x, y) =

F̂M (x, y) + (yB − y − 1)F̂BT
V (x, y + 1)

yB − y
, (6)

where numerator computes the accumulated sum, and denomi-
nator calculates how many pixels have been propagated in each
direction. Computing average mean is also benefit for feature
discrimination, as the consistent feature responses for different
segments are more easily supervised by ground truth.

Although the propagation process works in a bi-directional
manner, pixel u(x, y) actually receives all information from
other pixels that have the same segment of u(x, y), as the aver-
age means of the propagated pixels have been computed and re-
stored no matter which propagated directions come from. From
(6), the step-by-step alternative accumulation will lead to differ-
ent propagated information, whether left to right or right to left
in horizon direction, nor up to bottom or bottom to up in vertical
direction. As a result, four propagated features F̂LR

H , F̂RL
H , F̂TB

V ,
and F̂BT

V have to be equally combined, producing outputs F of
BFPB:

F =
1

4

(
F̂LR
H + F̂RL

H + F̂TB
V + F̂BT

V

)
, (7)

In (6), it can be seen that the information propagated to current
pixel is only associated with its previous pixel, indicating that
all pixels need to be ergodiced only once in each direction. As a
result, the entire propagation process is computationally cheap,
which is economic and desired in practice, especially for ap-
plications that require to compute high-resolution feature maps,
such as self-driving. Moreover, traditional graph-based propa-
gation methods [54] prone to the problem of propagation vanish,
due to the pixel-by-pixel loop operation. However, our method
relies on unidirectional computation, thus effectively alleviating
this problem.

2) Boundary Loss: Considering the class imbalance problem
between boundary and non-boundary pixels, the boundary loss
Lb adopts widely-used cross-entropy Lce [15] and dice loss
Ldice [13] to jointly learn boundary features, as Ldice is not
sensitive to the number of foreground/background pixels:

Lb(P ,B) = Lce(P ,B) +Ldice(P ,B), (8)

where P and B stand for binary boundary predictions, and its
corresponding ground truth, respectively.

IV. EXPERIMENTS

To evaluate our method, we have conducted exhausted experi-
ments on three semantic segmentation datasets: Cityscapes [23],
CamVid [24], and KITTI [25]. We have compared with recent
state-of-the-art lightweight segmentation networks in terms of
segmentation accuracy and execution speed. In addition, a series
of ablation studies have been carried on to reveal the potential
impact of various components, and better understand the under-
lying behavior of BSCNet.

A. Datasets and Evaluation Metrics

1) Cityscapes: The Cityscapes dataset [23] contains 30 ob-
ject categories, yet only 19 classes are used to evaluate se-
mantic segmentation. It contains 5K pixel-wise well annotated
images with 2048× 1024 resolution, which are divided into
2,975/500/1,525 images for training, validation and testing, re-
spectively. This dataset also includes nearly 20K coarse anno-
tated training images. These images are not used to train our
BSCNet, as the produced boundary ground truths are not accu-
rate due to coarse annotations.
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2) CamVid: Compared with Cityscapes [23], the CamVid
dataset [24] is a smaller road scene dataset. It contains 11 object
categories. All images are collected from the video sequences,
producing 701 densely annotated frames that have resolution of
960× 720. Following [8], [32], we split it into 367 for training,
101 for validation, and 233 for testing.

3) KITTI: The KITTI dataset [25] is another small self-
driving dataset collected in the rural areas of a certain city in
Germany. It only includes 200 annotated training images, and
additional 200 images without annotation for testing. The se-
mantic categories are compatible with Cityscapes [23].

4) Evaluation Metrics: For fair comparison with other state-
of-the-art lightweight segmentation networks, we employ the
standard evaluation metric mIoU score (mean intersection over
union between segmentation estimations and ground truth maps)
to measure segmentation accuracy. On the other hand, the
commonly-used floating-point operations per second (FLOPs),
model size (number of parameters) and frames per second (FPS)
are used to measure implementation efficiency.

B. Implementation Details

1) Training Settings: BSCNet is implemented in the hard-
ware server platform with a single RTX 2080Ti GPU card.
The software code is based on the MMseg toolbox [55] that
is an open-source repository for semantic segmentation. The
widely-used stochastic gradient descent algorithm is employed
to optimize BSCNet, where the momentum and weight decay
are set to 9× 10−1 and 5× e−4, respectively. For Cityscapes
dataset, the cosine learning policy [56] is adopted with initial
learning rate 10−1 and 16 images per batch for 120K iterations.
Additionally, we first randomly crop out image patches with res-
olution of 1024× 1024 from original images as additional data
augmentation. The final segmentation performance is evaluated
by BSCNet trained from the union of training and validation set.
Following [57], the results are also evaluated using multi-scale
inputs. To perform ablation studies, BSCNet is only trained from
training set, and evaluated in validation set. For CamVid dataset,
we set the initial learning rate to 10−3, and train for 140K itera-
tions with batch size 8. Additionally, BSCNet is directly trained
using the union of training and validation set with the input
resolution of 960× 720. Unless special statement, the baseline
results are directly borrowed from the corresponding publica-
tions.

2) Generation of Boundary Ground Truth: Following [32],
the ground truth of object boundaries are produced by perform-
ing edge detection based on segmentation ground truth. Con-
cretely, the filtered images that have pyramid resolutions are
first produced using multi-scale Laplacian kernels. Thereafter,
these filtered images are sequentially upsampled, thresholded,
and weighted combined to obtain final binary ground truth.

3) Loss Settings: As shown in Fig. 1, there are three losses
used to supervised the entire BSCNet. The first oneLf is after the
final output of our system, while the second one Laux is before
the beginning of HRB, both of which employ cross-entropy loss
for semantic segmentation. The last one Lb, defined in (8), is
used to supervise boundary predictions. Thus, the total loss L

TABLE II
COMPARISON WITH THE SELECTED STATE-OF-THE-ART APPROACHES ON

CITYSCAPES DATASET

can be written as:

L= Lf + α×Laux + β ×Lb, (9)

where α and β are two non-negative parameters that leverage
the trade-off between Lf , Laux, and Lb, respectively, setting as
α = 0.5 and β = 1, empirically.

C. Comparisons With State-of-the-Art Lightweight Networks

1) Experimental Results on Cityscapes: Table II shows the
comparative results with some state-of-the-art lightweight net-
works on the validation and test set of Cityscapes dataset.
Compared with the selected baselines, BSCNet achieves best
trade-off in terms of segmentation accuracy and running effi-
ciency. With only 9.7 GFLOPs and 1.5 M model size, BSCNet
achieves 77.2% mIoU on test set and 96FPS running speed.
When multi-scale evaluation is adopted [57], the segmentation
performance is improved to 78.3% mIoU score. It is interesting
that when the input resolution is reduced to 512× 1024, our
BSCNet delivers 2.1% mIoU drop, yet obtaining fastest running
speed (380FPS), and smallest computing costs (2.6GFLOPs).
Even so, our method still outperforms some lightweight net-
works that have higher input resolution, e.g., 1024× 2048, due
to the fact that the multi-scale semantic context are well cap-
tured by ELPPM and the object boundaries are well explored by
BAFM. Specifically, compared with PIDNet [42] that achieves
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Fig. 6. Comparison of some visual examples of semantic segmentation on Cityscapes validation set. From left to right are input images, corresponding ground
truth, segmentation outputs from STDCNet [32], ERFNet [6], BiSeNetV2 [9] and our BSCNet. For more clear comparison of each visual example, the area inside
yellow windows are enlarged among all methods. (Best viewed in color).

second-ranked mIoU score, our BSCNet has nearly 5× less pa-
rameters and smaller GFLOPs, yet delivering 0.1% mIoU im-
provement. Among all baselines, although FBSNet [67] has the
fewest number of parameters (0.6 M) that is only half size of
BSCNet, our method surpasses it by large margins with remark-
able 7.4% mIoU improvement, and achieves comparable run-
ning speed (96FPS vs 90FPS) and computing costs (9.7GFLOPs
vs 9.5GFLOPs).

Fig. 6 shows qualitative results of some visual examples
on Cityscapes validation dataset. Each example shows both
the original image, corresponding ground truth and the color
coded segmentation outputs. For better visual comparison, we
also exhibit the segmentation results of three state-of-the-art
lightweight models, including STDCNet [32], ERFNet [6], and
BiSeNetV2 [9]. It is evident that, compared with state-of-the-art
baselines, BSCNet produces smoother outputs and more accu-
rate predictions with delineated object boundaries and shapes,
such as the instances of “sign”, “tree”, and “train” in the second,
third, and fourth example. Moreover, our method shows excel-
lent capability to correctly segment tiny object instances, such as
“pole” in first and fourth examples, probably due to the auxiliary
of detective object boundaries. Finally, it also demonstrates that
our approach is very effective for the occlusions between differ-
ent objects. As shown in the fourth example where the “train”
and “bus” are often misclassified by other methods, our BSC-
Net still obtains accurate segmentation outputs, although they
are occluded by the instances of “tree” and “pole”, and share
very similar appearance.

2) Experimental Results on CamVid: In this section, we carry
out experiments on the CamVid dataset to further evaluate the
effectiveness of our method. Following [8], [30], we fix the full
resolution of 960× 720 to train BSCNet for fair comparison.
To further improve performance, besides training on scratch,
we also fine-tune BSCNet pre-trained on Cityscapes. All the
results are reported in Table III. It is observed that, without
fine-tuning, BSCNet obtains competitive results with respect
to PIDNet [42] in terms of mIoU scores (78.4% vs 78.7%), yet
BSCNet runs nearly 2× faster, and has only one fifth model

TABLE III
COMPARISON WITH THE SELECTED STATE-OF-THE-ART APPROACHES ON

CAMVID TEST SET

size. When the pre-trained model is introduced, the segmenta-
tion accuracy improves to 79.8%, without significant grow of
model size and GLOPs. In particular, BSCNet achieves smallest
computing costs (3GFLOPs), and second-rank running speed
(319FPS) among all selected baselines. Moreover, although our
BSCNet is only trained from scratch, it still achieves better re-
sults (78.4% vs 68.7%) than BiSeNetV1 [8] pre-trained from
ImageNet dataset [65]. Similar with the results evaluated on
Cityscapes dataset, SGCPNet [59] has approximately half model
size of BSCNet, yet delivering 10.8% mIoU score drop, and
slightly slower inference speed (278FPS vs 319FPS). Fig. 7 also
illustrates some segmentation outputs on CamVid test set. As
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Fig. 7. Some visual examples of segmentation outputs on Camvid test dataset.
From top to bottom are input images, corresponding ground truth, and segmen-
tation results using our BSCNet. (Best viewed in color).

TABLE IV
COMPARISON WITH THE SELECTED STATE-OF-THE-ART APPROACHES ON

KITTI DATASET

TABLE V
THE EFFECTIVENESS OF EACH COMPONENT ON CITYSCAPES VAL SET WITH

THE INPUT RESOLUTION OF 1024× 2048

can be seen, BSCNet still obtains visually-pleasing segmenting
results, consistenting with the outputs as shown in Fig. 6.

3) Experimental Results on KITTI: Following [64], we also
evaluate the generalization capability of BSCNet. Specifically,
we directly predict the segmentation outputs of training images
in KITTI using BSCNet trained from Cityscapes. The results
are reported in Table IV. Among all selected state-of-the-art
networks, BSCNet achieves the highest segmentation accuracy
(52.4% mIoU score), together with fewest computing budgets
(2.6GFLOPs) and fastest running speed (380FPS). In spit of
only having one third model size of BSCNet, CGNet [12] re-
quires more than 2.8× computation amount, approximate one
fifth running speed, and 15.5% accuracy loss.

D. Ablation Studies

In order to understand the underlying behavior of BSCNet,
this section reports the results of a series of ablation studies.

1) Ablation Studies of Different Components: Table V re-
ports some ablation studies on Cityscapes validation set, which
quantify the individual contribution of three main components:
BFM, ELPPM, and BAFM, respectively. We first construct base-
line only using LRB and HRB, and then three components are
sequentially added. The results show that each component con-
tinuously improves the performance, yet with small amount of
increase in terms of GFLOPs and model size. Among all com-
ponents, BFM obtains smallest mIoU gain (0.9%). However,
BAFM improves 1.62% mIoU scores, with only increase of
0.04 M model size and 0.818GFLOPs, indicating that the learned
object boundaries are indeed helpful for semantic segmentation.
Particularly, ELPPM achieves remarkable mIoU improvement
(2.37%) with slightly increase of model parameters and comput-
ing overheads (0.09 M and 0.043GFLOPs), benefiting from the
powerful capability of learning multi-scale context. We further
evaluate the importance of two BFMs by sequentially plugging
them into our backbone. From Table V, exchanging informa-
tion with high-resolution features obtains better results, proba-
bly because high-resolution features keep more image details for
interaction. Moreover, when two BFMs are both employed, our
method achieves the best results, indicating that using feature in-
teraction as many as possible is beneficial for improving perfor-
mance. Fig. 8 illustrates the segmentation outputs that evaluate
the contributions of different components. Consistenting with
Table V, the visual results are gradually closed to ground truth
when individual component is introduced step-by-step, whether
correctly identifying different object instance (e.g., “terrain” in
the final example) or accurately delineating object boundaries
(e.g, “sign” and “person” in the first two examples).

To further demonstrate BAFM, Fig. 9 exhibits some estimated
binary boundaries, and its influence to final segmentation out-
puts. It is observed that BAFM is very effective for clutter area
and tiny objects. For instance, the misclassified “fence” are rec-
tified to “tree” and “building” in first example, and the incom-
pletely slender “pole” and discontinuous “sidewalk” broken by
“pole” and “road” are correctly identified in last two examples.
On the other hand, feature propagation in BAFM heavily de-
pends on the quality of estimated binary boundaries. In the first
example, some instance of “pole” are incorrectly classified to
“building” or “grass”, mainly due to the fact that their bound-
aries are not well predicted. The edge detectors may consider
that these poles are texture part of “building” or “grass”.

Fig. 10 also shows the validity of feature propagation in
BAFM. Before the features are propagated, the high feature re-
sponse always scattered over different parts of an object area
(e.g., windows of “car” in first example, and heads of “person” in
second one), which is unfavourable for classification. After fea-
ture propagation is conducted, due to the uniform assign of fea-
ture responses, pixel features are consistently enhanced within
the same segment (e.g., “car” in the first example, “person”
in the second example, and “tree” in two examples), resulting
in the improvement of discriminative power that is beneficial for
correctly recognizing the associated object area.

2) Ablation Studies for ELPPM and BAFM: As plug-and-
play modules, ELPPM and BAFM play an essential role for
capturing multi-scale context and utilizing boundary guidance.
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Fig. 8. Some visual examples for qualitative evaluation of different components. From left to right are input images, corresponding ground truth, segmentation
results from baseline, baseline + BFM, baseline + BFM + ELPPM, and baseline + BFM + ELPPM + BAFM. For more clear comparison of each visual example,
the area inside yellow windows are enlarged among all methods. (Best viewed in color).

Fig. 9. Some visual examples using BAFM on Cityscapes validation dataset. From left to right are input images, boundary ground truth, estimated boundaries,
segmentation ground truth, segmentation results without BAFM, and with BAFM. For more clear comparison, the area inside yellow windows are enlarged for all
visual examples. (Best viewed in color).

Fig. 10. Feature propagation in BAFM. From left to right are input images, estimated boundaries, and feature heatmaps before and after propagation. Red color
indicates high responses, while blue color denotes low ones. For clarity, the channel numbers are superimposed on heatmaps. (Best viewed in color).

As a result, this section evaluates two modules by alternatively
plugging them into different recent state-of-the-art lightweight
backbones. In order to increase diversity of backbones, single-
path [6], [51], [69], [70] and dual-path [9], [32] architectures are
both adopted. The results are reported in Table VI. Regardless of
which lightweight backbone is utilized, ELPPM and BAFM are
able to consistently boost segmentation performance, yet with
slight increase of model size and GFLOPs. Particularly, there
are barely any changes of model parameters when BAFM is
adopted. It is also intriguing that the gains brought by two mod-
ules gradually decrease, as more and more powerful lightweight
backbones are employed. Consistenting with Table V, ELPPM
always brings more improvement than BAFM.

3) Ablation Studies for Capturing Multi-Scale Semantic Con-
text: To evaluate the ability for capturing multi-scale semantic
context, this section compares ELPPM with Res2Net [20] and
PSPNet [2]. The results are reported in Table VII. It can be seem

that there is a slightly performance improvement (0.33% mIoU
score), yet with significant increase of model size (0.72 M),
probably due to the standard convolutions used in Res2Net, in-
stead of depth-wise convolution employed in ELPPM. When
ELPPM is replaced by PSPNet [2], it requires less model param-
eters (1.41 M) and fewer computing overheads (9.677GFLOPs)
due to its pooling operations to investigate multi-scale global
context. However, PSPNet is too weak to extract semantic con-
text, leading to the poor segmentation mIoU scores (76.58% vs
78.63%).

4) Ablation Studies for the Location of BFM: This section
evaluates the influce by changing the positions of BFM in our
backbone. However, it is impractical to enumerate all possible
positions. We thus fix one BFM, and change the location of
another. The results are reported in Table VIII. It is observed that
moving BFMs behind the stride version of ECCM often delivers
to poor performance, probably because image details have been
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TABLE VI
ABLATION STUDIES FOR ELPPM AND BAFM AS PLUG-AND-PLAY MODULES

ON CITYSCAPES VAL SET

Par’ and ‘Flo’ stand for parameters(M) and FLOPs(G), respectively.

TABLE VII
PERFORMANCE COMPARISON BETWEEN ELPPM, RES2NET, AND PSPNET IN

TERMS OF EFFICIENCY AND ACCURACY

TABLE VIII
ABLATION STUDIES BY CHANGING THE POSITIONS OF BFMS

discarded in low-resolution features, which are unsuitable for
directly interacting with high-resolution features.

E. Analysis of Parameter Settings

1) Effect of Pooling Path Number in ELPPM: The number of
pooling paths determines how many scales of context cues are
explored, significantly influencing the trade-off between the ca-
pability of context representation and computational efficiency
in ELPPM. We thus evaluate the performance variance along
with the changes of path number i, ranged from 2 to 8 with
updated step 2. The results are reported in Table IX. Note we
employ the mIoU improvement brought by ELPPM only as base-
line. From Table IX, the mIoU score boosts along with the in-
crease of pooling path, yet requiring more and more model size
and computing costs. The best trade-off is achieved when i = 4,
thus chosen as default setting in ELPPM.

2) Effect of Different Weight Combinations for Loss Func-
tion: This section evaluates the effect of auxiliary loss Laux

TABLE IX
PARAMETER ANALYSIS FOR POOLING PATH NUMBER i IN ELPPM ON

CITYSCAPES VAL SET

TABLE X
PARAMETER ANALYSIS FOR DIFFERENT WEIGHT COMBINATIONS OF LOSS

FUNCTION ON CITYSCAPES VAL SET

and Lb, which is helpful to optimize the whole training process,
and has no interference with learning the master branch loss
Lf . By adjusting and combining hyper-parameters α and β in
range [0, 1] in steps 0.5, we carry on a set of experiments for
optimization. Note Lb = 0 indicates the entire training process
is dominant by segmentation loss, without any guidance from
object boundaries. The results are reported in Table X. It is ob-
served that the mIoU scores peak at α = 0.5 and β = 1, which
are also opt to default settings in BSCNet.

V. CONCLUDING REMARKS AND FUTURE WORK

This paper has presented a BSCNet for lightweight semantic
segmentation that leverages boundary auxiliary and multi-scale
semantic context. From resolution perspective, ELPPM adopts
pyramid pooling structure to achieve powerful representation for
capturing multi-scale context clues. Additionally, the proposed
BAFM employs estimated object boundaries as high-level guid-
ance to propagate convolution features, improving discrimina-
tion power for identifying each pixel. Both ELPPM and BAFM
are computationally efficient as they require very few model size
and computational costs. Finally, we introduce the detailed ar-
chitecture of entire BSCNet. The experimental results show that
BSCNet achieves state-of-the-art trade-off in terms of segmen-
tation accuracy and implementing efficiency on three datasets:
Cityscapes, Camvid, and KITTI. Moreover, the ablation studies
demonstrate that ELPPM and BAFM are very simple and effec-
tive plug-and-play modules by varying recent state-of-the-art
lightweight backbone networks.

In spite to achieving impressive performance for lightweight
semantic segmentation, in the future, we believe that BSCNet
can be easily transferred to other real-time multimedia tasks,
such as pose estimation [71] and character recognition [72].
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