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Abstract— In recent years, how to strike a good trade-off
between accuracy, inference speed, and model size has become
the core issue for real-time semantic segmentation applica-
tions, which plays a vital role in real-world scenarios such
as autonomous driving systems and drones. In this study,
we devise a novel lightweight network using a multi-scale
context fusion (MSCFNet) scheme, which explores an asym-
metric encoder-decoder architecture to alleviate these problems.
More specifically, the encoder adopts some developed efficient
asymmetric residual (EAR) modules, which are composed of
factorization depth-wise convolution and dilation convolution.
Meanwhile, instead of complicated computation, simple decon-
volution is applied in the decoder to further reduce the amount
of parameters while still maintaining the high segmentation
accuracy. Also, MSCFNet has branches with efficient attention
modules from different stages of the network to well capture
multi-scale contextual information. Then we combine them before
the final classification to enhance the expression of the fea-
tures and improve the segmentation efficiency. Comprehensive
experiments on challenging datasets have demonstrated that the
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proposed MSCFNet, which contains only 1.15M parameters,
achieves 71.9% Mean IoU on the Cityscapes testing dataset and
can run at over 50 FPS on a single Titan XP GPU configuration.

Index Terms— Real-time semantic segmentation, lightweight
network, encoder–decoder architecture, context fusion.

I. INTRODUCTION

AUTONOMOUS driving technology has been widely
studied to enhance the driving experience and relieve

traffic pressure [1], [2]. With the help of cameras, it becomes
easier to perceive and understand the surrounding environ-
ment [3]–[5]. Semantic segmentation, which aims at assigning
a category to each pixel for the given image, is a challenging
research topic in the field of computer vision. Recently,
deep convolutional neural networks (DCNNs) [6]–[8] have
shown their impressive capabilities on image classification
with high resolution. Especially the fully convolutional net-
work (FCN) [9], which is a pioneer CNN for semantic seg-
mentation task. The encoder-decoder network has also become
a popular structure for solving the segmentation problem.
Although achieving remarkable results, most of the previ-
ous networks [10]–[14] ignored the segmentation efficiency,
namely, their calculation and storage requirements are so high
that it is difficult to meet the demands of real-world appli-
cations where information needs to interact quickly with the
environment. Meanwhile, electric equipments, such as robot-
ics, cellphones, and telemedicine, etc., having small memory
capacity and limited computational cost, cannot support the
enormous complex algorithms.

Therefore, it is a primary trend to design lightweight and
efficient networks to overcome the above problems. The
smaller-scale network means a faster inference speed and
less redundancy [15]. However, most of the existing real-time
research works [16]–[19] mainly focus on shallowing the net-
works and reducing parameters to shorten the time-consuming
at the expense of model accuracy.

In this work, we devise a novel lightweight and efficient net-
work, called multi-scale context fusion network (MSCFNet),
to get a better balance between the accuracy and efficiency
for real-time semantic segmentation task. Like most of the
previous works, our proposed model also explores an asym-
metric encoder-decoder structure. As presented in Fig. 1,
our MSCFNet has multiple branches with efficient attention
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Fig. 1. The procedure of our proposed MSCFNet. The sizes (width, height, and channel) of the intermediate features are given in the process of network.
“C” denotes the concatenation, “×1, ×2 and ×4” mean the upsampling factor, “1/2, 1/4 and 1/8” indicate the ratio of the original image scale. (Best viewed
in color).

mechanisms from different stages of the network, containing
multi-scale contextual information for segmentation purpose.
Although a small number of parameters and calculations have
been added, the general execution improves a lot. The core unit
of our MSCFNet is an efficient asymmetric residual (EAR)
module with dilated factorized depth-wise separable convo-
lution, which allows us to extract attentive and cooperative
feature information on a large receptive field efficiently and
quickly.

Our main contributions can be listed as three-fold:
• We devise an efficient asymmetric residual (EAR) module

and construct a lightweight semantic segmentation net-
work with a multi-scale context fusion scheme, which
fuses the attentive features adaptively, contributing to the
efficiency and effectiveness of the segmentation task.

• Short-range and long-range connections with efficient
spatial and channel attention presented in our method
facilitate the local and contextual information interac-
tion greatly, contributing to the improvement of the
performance.

• Our network achieves prominent performance on both
Cityscapes and CamVid datasets without any other data
augment skills. It has 1.15M model size, while achieves a
mean intersection over union mIoU) of 71.9% and 69.3%
on Cityscapes and CamVid datasets, respectively.

II. RELATED WORK

A. Factorization Convolution

Factorization convolution is often used to improve the
efficiency where a traditional two-dimensional convolution is
replaced by two one-dimensional convolutions. Xception [20]

and MobileNet [21] applied depth-wise separable convolution,
where each input channel and each filter kernel is divided
into a group, which operates individually. ERFNet [18],
DABNet [22], and LEDNet [23] decomposed a 3 × 3 con-
volution into a 3 × 1 and a 1 × 3 convolution. They are all
beneficial from the factorization convolution, which can reduce
the amount of computational burdens.

B. Dilation Convolution

Dilation convolution is used to insert zeros between two
adjacent kernel values of the standard convolution to achieve
the purpose of enlarging the receptive field without adding the
parameters. For example, DeepLab series [11], [24], [25] sug-
gested a spatial pyramid pooling module that adopts various
dilation rates arranged as a pyramid. LEDNet [23] designed
a split-shuffle-non-bottleneck (SS-nbt) module using the dila-
tion convolution to construct an asymmetric encoder-decoder
architecture. Dilation8 [26] proposed a multi-scale context
aggregation network by dilated convolutions. EDANet [27]
incorporated dilated convolution and dense connection to
attain high efficiency.

C. Lightweight Segmentation Networks

Lightweight segmentation networks are eagerly required to
attain the desired balance between the prediction accuracy
and the related inference efficiency [28]–[35]. ENet [16] was
the first lightweight architecture used in real-time applica-
tions, which trimmed the amount of the convolution filters to
decrease the calculation. ESPNet [36] proposed an effective
spatial pyramid module, which can collect multi-scale con-
textual information. ICNet [37] used a strategy called image
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Fig. 2. Comparisons of various types of residual modules. “N” is the number
of the output channels, “R” represents the dilation rate of kernel and “D”
indicates a depth-wise convolution. (a) Bottleneck [16]. (b) Non-bt-1D of
ERFNet [18]. (c) SS-nbt of LEDNet [23]. (d) Our EAR module.

cascade to improve the segmentation efficiency. BiseNet [38]
introduced two branches, one is to retain shallow spatial infor-
mation and the other is to extract deep contextual information.
LEDNet [23] showed the benefit brought by the channel split
and channel shuffle operations. Although these networks have
made a relatively satisfactory trade-off between performance
and speed, there is still adequate room for further promotion.

D. Attention Mechanism

Attention mechanism has been broadly adopted in the field
of pattern recognition and computer vision. Its essence is
to imitate the human visual mechanism to learn a weight
distribution of the image features and apply these weights
to the original features. CCNet [39] devised an efficient
criss-cross attention module to capture the image dependen-
cies. GCNet [40] and ANN [41] further observed the non-local
attention mechanism and achieved promising performance
for the semantic segmentation task. DANet [13] used the
channel and spatial attention tricks simultaneously to model
the semantic inter-dependencies. Some of the above works
performed sophisticated matrix multiplication on the pixel
level, which is not suitable for lightweight applications.

SENet [42], which is a lightweight threshold mechanism,
has been widely used to model the correlation of all channels.

Fig. 3. Downsampling block structure. Nin : input channel, Nout : output
channel, Nconv : output channel after convolution, B N : Batch Normalization.

It first employs a global average pooling to squeeze the global
spatial information into channel descriptors and then uses two
fully connected layers to capture cross-channel interaction.
GENet [43] introduced a pair of operators, consisting of
gathering feature responses from a large scale and exciting
this information to local features. CBAM [44] sequentially
inferred attention maps along spatial dimension and channel
dimension separately, and then the input feature maps are
multiplied to the attention maps for adaptive feature refine-
ment. GSoP-Net [45] introduced higher-order representation
across from lower to higher layers to effectively explore those
statistical information. By dissecting the mechanism in SENet,
ECANet [46] proposed an effective yet efficient cross-channel
interaction scheme avoiding channel dimensionality reduction.
It performs well on the tasks of object detection and image
classification in terms of parameters and computations.

In contrast to the above approaches, in our method,
we design a lightweight semantic segmentation network with
a contextual fusion structure to speed up the network training,
reduce the model size, and meanwhile ensure the effectiveness
of the final inference results. Regarding the popular attention
mechanism, we inject spatial and channel attention based on
the different conditions of the network at different stages.
Simultaneous consideration of these schemes boosts the final
segmentation accuracy.

III. METHODOLOGY

In this section, we first illustrate our efficient asymmetric
residual (EAR) module and then introduce the efficient atten-
tion and context fusion modules. Finally, we elaborate the
whole network architecture which consists of an initial block,
three input injection modules, two downsampling blocks, two
EAR blocks, and two context branches. The entire structure
of the proposed MSCFNet is given in Fig. 1.

A. EAR Module

Lightweight networks have witnessed a lot of residual
designs (See Fig. 2). Inspired by these designs, we devise
the efficient asymmetric residual (EAR) module with their
common advantages to achieve a better result under the
circumstance of limited computational capacity. Our EAR
module is shown in Fig. 2 (d). Firstly, the number of input
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channels is reduced to half by a 3 × 3 convolution at the
bottleneck. The reason why we use a 3×3 convolution instead
of a 1×1 convolution which has fewer parameters is that when
using 1 × 1 convolution, the residual block must construct
deeper for a larger receptive field capturing more contextual
information, the computational cost and memory requirements
must increase. The following is a two-branch structure. One
branch applies factorization convolution to depth-wise convo-
lution so that it can collect local and short-range feature infor-
mation. Specifically, a standard 3 × 3 depth-wise convolution
is divided into a 3 × 1 convolution and a 1 × 3 convolution.
They would have the same size of the receptive field, while
the latter has a fewer number of parameters. Another branch
adopts dilation convolution enlarging receptive field to the
factorization depth-wise convolution to capture complex and
long-range feature information. To avoid the gridding artifacts,
we use different dilation rates in different EAR modules,
which are not integer powers of 2.

For the sake of sharing information for different branches,
we put the feature interaction operations between 3 × 1 and
a 1 × 3 convolution in the two branches. In such a way,
the contextual information extracted by the two branches
can complement each other. The feature maps from each
branch are then sent to the channel attention module for
better extracting discriminative features. And then, the two
low-dimension branches are fused and fed into the channel
attention module for the same purpose. Following is a 1 × 1
point-wise convolution to recover the related channels of the
feature maps. Finally, For the sake of evading the drawback
of information independence between channels caused by
depth-wise convolution, we explore a channel shuffle followed
the combination of the output of 1 × 1 point-wise convolution
and the input to facilitate the channel information exchanging
and sharing. The above operations can be expressed as follow:

xb = C3×3 (ρ (xE ARin )) , (1)

y1 = C A
(
C1×3

(
C3×1 (xb) + C3×1,d (xb)

))
, (2)

y2 = C A
(
C1×3,d

(
C3×1,d (xb) + C3×1 (xb)

))
, (3)

yE ARout = S (C1×1 (C A (ρ (y1 + y2))) + xE ARin ) , (4)

where xE ARin and yE ARout represent the input and output of
the EAR module, xb is the output of 3×3 convolution, y1 and
y2 are the outputs of two branches in EAR module, Cm×n

denotes convolution operation with the kernel size m ×n, d is
the dilation rate, ρ is the PReLU nonlinear activation function,
S means channel shuffle operation.

B. Efficient Attention

Generally, owing to the small number of network layers,
a lightweight network can hardly extract deep enough features
thoroughly like a large network. Consequently, producing rep-
resentative features and combining them may be an essential
manner to enhance the segmentation performance. To this end,
we borrow the idea of the attention mechanism in our model.
Attention is beneficial to both information integration and
object feature emphasizing. Our efficient attention mechanisms
include both spatial attention and channel attention modules.

Fig. 4. The convergence curve of our MSCFNet on Cityscapes (top) and
CamVid (bottom) datasets. (Best viewed in color).

1) Spatial Attention: The spatial attention we used is moti-
vated by CBAM [44], exploring the inter-spatial relationship of
the input features to generate attention maps that depict where
to highlight or suppress. The average pooling and max pooling
operations are first adopted, and then concatenating them
to formulate a feature descriptor followed by a convolution
layer to produce the desired spatial weight maps. Finally,
we multiply the attention maps and the input features of the
module to obtain the final generated features. This procedure
can be formulated as follows:
S A (F)=σ

(
f 7×7 (Concat [Avg P (F) , Max P (F)])

)
× F,

(5)

where F ∈ RC×H×W denotes the input features, σ is the sig-
moid activation function, f 7×7 denotes a standard convolution
with the kernel size 7 × 7, Concat means the concatenate
operation, Avg P and Max P represent the average pooling
and max pooling operation, respectively.

The spatial attentions are placed between the three injection
modules and the main branch (see Fig. 1). The outputs of
spatial attention are calculated in the following:

Fn
sa = S A

(
1

β
Input

)
, β = 2n, n = 1, 2, 3, (6)
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Fig. 5. Feature maps with different levels on the Cityscapes validation set.

where Input is the observed image, β denotes the factor of
the reduction and S A means the spatial attention operation.

2) Channel Attention: The channel attention we adapted
is derived from ECANet [46], which just occupies a little
computational resource but improves the performance greatly
by comparison. We settle three channel attention modules
followed by each feature combination operation as well as one
before context fusion in the main branch, and two in the middle
of the context branches. They can be simply separated into
two categories, one is the attention operation in the encoder
process, and the other is the attention operation in the decoder
process (see Fig. 1). The procedure of the above channel
attention can be formulated as follows:

C A (F) = σ
(

f k×k (T (Avg P(F)))
)

× F, (7)

where T represents the compression, transposition and exten-
sion operations of the tensor dimensions, f k×k denotes a
standard convolution with adaptive selection of kernel size k.

The attentive features of the encoding process can be
calculated as follow:

Fn
ca = C A

(
Concat

(
On, Fn

sa

))
, n = 1, 2, 3, (8)

where Fn
sa and Fn

ca represent the outputs of spatial attention
and channel attention respectively, O1 is the output of the
initial block, O2 and O3 are the outputs of the two EAR
blocks, C A denotes the channel attention operation.

And the attentive features in the decoding process can be
described as follow:

FBri = C A (U p (Ii , α)) , α = 2i−1, i = 1, 2, 3, (9)

where FBr1, FBr2 and FBr3 denote the output features of the
main branch and the other two projection branches, U p is the
bilinear interpolate operation in the corresponding branches,
I1, I2, I3 indicate the low-level, intermediate-level, high-level
contextual information respectively, and α is the magnification
factor.

In summary, spatial attention focuses on indicating “where”
to highlight while channel attention focuses on indicating
“what” a given feature is. By considering these two attention
mechanisms simultaneously at different stages in the network,
our method can adaptively promote the representational power
of the extracted features and facilitate the local and contextual
information interaction greatly, which have been validated to
be effective in the experimental section.
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TABLE I

ABLATION STUDY RESULTS ON CAMVID TESTING SET. CF: CONTEXT FUSION, FC: FEATURE CONCATENATION, FA: FEATURE ADDING, CA: CHANNEL
ATTENTION, SA: SPATIAL ATTENTION; R: DILATION RATE. SUPERSCRIPT‘†’ DENOTES THE FINAL VERSION

TABLE II

ABLATION STUDY RESULTS BY GRADUALLY ADDING INTERMEDIATE

CONTEXTUAL FEATURES ON THE CAMVID TESTING SET

TABLE III

EVALUATION RESULTS ON THE CITYSCAPES TESTING SET

C. Context Fusion

Previous methods usually learnt finer-scale predictions in a
stage-by-stage manner. That means, the net in each stage is
trained by the initialization of the previous stage net, which
may result in the contextual cues cannot complement each
other. Meanwhile, some remarkable networks have shown that
good performance usually stems from a fusion of hierarchical
information. Hence, we adopt this idea in our method before
the final classification to integrate the multi-scale contex-
tual information. The features Fc f from the context fusion

operation can be formulated as follow:
Fc f = ρ (FBr1 + FBr2 + FBr3) . (10)

Therefore, it can be seen that the context fusion mod-
ule combining attentive contextual information from different
stages of the network, which can alleviate the limitations
caused by the spatial statistics of pixels loss.

D. Network Architecture

In this subsection, we introduce the entire lightweight
network as presented in Fig. 1. MSCFNet has an asymmetric
structure with an encoder structure and the related decoder
structure, finally followed by a widely used classification layer.

1) Encoder: In the main flow, the initial feature extraction
module includes three 3×3 convolutions, in which the first one
uses stride 2 to extract feature information and reduce the size
simultaneously. Then the downsampling block we employed
has two alternative outputs of a 3×3 convolution with stride 2
and a 2 × 2 max-pooling with stride 2. If the amount of the
input channels is larger than or equal to that of the output
channels, the block is just the single 3 × 3 convolution. Oth-
erwise, the max-pooling operation is added, the concatenation
of these two branches forms the final downsampling outputs.
Please see Fig. 3 for more details [27].

The downsampling operation amplifies the receptive field
for collecting more contextual information. Nevertheless,
the reduction in terms of the resolution of the input feature
maps often leads to spatial and boundary resolution loss.
By taking these into account, we just perform downsampling
three times progressively and obtain 1/8 resolution of the
original feature map to gather deeper context but maintain
more image details. Followed each downsampling block is the
EAR block, which includes different numbers of consecutive
EAR modules. The first block has 5 EAR modules, while
the second consists of 10 EAR modules for dense feature
extraction. To better promote feature propagation and contex-
tual information relationship, we apply inter-block concate-
nation to combine high-level and low-level features. Also,
we employ dilation convolution in the blocks as depicted
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TABLE IV

PER-CLASS IOU(%) PERFORMANCE ON THE CITYSCAPES TESTING SET. LIST OF CATEGORIES: ROAD, SKY, CAR, VEGETATION, BUILDING,

SIDE-WALK, PEDESTRIAN, BUS, TRAFFIC SIGN, BICYCLE, TERRAIN, TRAFFIC LIGHT, RIDER, POLE, TRAIN,

MOTORCYCLE, WALL, FENCE AND TRUCK. ‘CLA’: 19 CLASSES

TABLE V

COMPARISON RESULTS ON THE CAMVID TESTING SET

in Section II-B. The dilation rates in the first block are
{1, 1, 2, 2, 5}, and the second are {1, 2, 5, 7, 9, 2, 5, 7, 9, 17},
respectively. We choose this scheme to mitigate the gridding
artifacts and enlarge the receptive field for more context of
larger scope.

For better feature reuse, we insert efficient spatial atten-
tion in the shortcut connections between the input features,
which is handled by three input injection modules with 1/2,
1/4, 1/8 ratios, and two downsampling blocks, as well as
the last convolution layer respectively. Moreover, to inte-
grate contextual semantic information and allocate channel
information resources of the feature maps, we use effective
channel attention modules followed the above three identical
places of the feature concatenations. What’s more, we apply
long-range shortcut connections in our network. The two
context branches are composed of efficient channel attentions
covering contextual information from different scales. Also,
this operation alleviates the contradiction that shallow features
lack semantic information and deep features lack boundary and
detailed information.

2) Decoder: Our Decoder is asymmetrical relative to the
Encoder. It entirely uses a ×4 upsampling and a final ×2
deconvolution operations to restore the original input image
size and output the final segmentation prediction simultane-
ously. Compared to some existing networks directly upsam-
pling 8 times or others decoding step by step, our two-step

decoder structure combines the superiority of the two, which
not only ensures the simplicity of the calculation, but also
guarantees the maximum recovery of the decoded information.

IV. EXPERIMENTS

A. Implementation Protocol

1) Datasets: We use two popular benchmarks of urban
street scenes – Cityscapes [52] and CamVid to assess the
effectiveness of our proposed network. The Cityscapes dataset
contains 19 semantic categories including 5000 fine-annotated
samples with the size of 2048 × 1024 that are separated into
three subsets: 2975 samples used for training, 500 samples
used for validation, and the other 1525 samples used for
testing. The CamVid is another smaller dataset for self-driving
scenarios. It has 11 semantic categories with 367 training,
101 validation, and 233 testing samples, of which the image
size is 960 × 720. For Cityscapes and CamVid, the original
input is resized to 1024 × 512 and 480 × 360 for network
training, respectively.

2) Parameter Settings: For the Cityscapes dataset, we train
our network end-to-end by exploiting the stochastic gradient
descent (SGD) [53] method with a batch size of 4 to leverage
the hardware memory. The momentum is set as 0.9 and also
the related weight decay is set as 1×10−4. The “poly” policy
for learning rate is also adopted, where the learning rate is
adaptively adjusted according to the following equation after
every iteration:

lr = lrbase ×
(

1 − i teration

max_i teration

)power

, (11)

where lrbase is the initial learning rate, lr is the learning
rate after each iteration, i teration is the index of the current
iteration, max_i teration is the maximum number of iterations
in each epoch. We configure the initial learning rate as
4.5 × 10−2 and the power is 0.9.

When performing training on the CamVid dataset, we adjust
the optimization method to Adam with a batch size of 8.
The momentum is set as 0.9 and the weight decay is set as
2×10−4. Also, we employ the “poly” learning rate policy with
the initial learning rate of 1 × 10−3. Fig. 4 plots the curves of
the loss function vs. the number of iterations on the Cityscapes
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Fig. 6. The comparative results on the Cityscapes val dataset. From top to the bottom are successively the original observed images, ground truths, segmentation
results from our MSCFNet, LEDNet [23], DABNet [22], ERFNet [18], EDANet [27], CGNet [47] and ESPNet [36]. (Best viewed in color).

and CamVid datasets. The two curves drop smoothly and
converge eventually, indicating that our MSCFNet can be well
trained.

B. Ablation Study

In this part, we conduct comparative studies to demonstrate
the feasibility and effectiveness of our presented method. All
the ablation studies are conducted on the CamVid training set,
validation set, and evaluated on its testing set.

1) Context Fusion: To study how the contextual features
affect the segmentation accuracy, we have performed exper-
iments without any attention mechanism in this part. From
Table I (a) we could observe that the segmentation results with-
out the context fusion mechanism are more than 1% lower than
those used, which has confirmed that multi-scale contextual
features play a critical role in dense pixel classification tasks.
As for the way of context fusion, feature adding has better
performance than that of feature concatenation. In Table II,
we also study how the different levels of features affect the
segmentation results. Fig. 5 depicts the heat maps from the
low-level, mid-level, and high-level contextual features.

2) Attention Module: We use the attention mechanism for
better extracting spatial features and promoting channel infor-
mation interaction. Table I (b) demonstrates the effectiveness
brought by channel and spatial attention. Adding channel
attention SE [42] can bring 0.1% slightly better accuracy.
However, ECA [46] works better with fewer parameters.
When we add spatial attention to the injection branches,
the segmentation accuracy increases from 69.16% to 69.30%.
From the above studies, we conclude that by using the channel
and spatial attention mechanisms simultaneously, we can gain
better segmentation performance at the cost of negligible
parameters increasing.

3) Dilation Rate: As depicted in Table I (c), we design
three experiments to study the effect of the number of EAR
modules and the dilation rate. First, we reduce the EAR
modules to 3 in the first block and to 6 in the second block.
We find that the segmentation accuracy is 1.03% lower than
that of our final version, indicating that more EAR modules
can improve the performance. Then setting the same number
of modules, we adopt the idea of DABNet [22] with the
dilation rates are the power of 2 in the second EAR block.
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Fig. 7. The comparative results on the CamVid testing set. From left to right are original observed images, ground truths, segmentation outputs from our
MSCFNet, DABNet [22], CGNet [47], SegNet [17] and ENet [16]. (Best viewed in color).

The results also validate that our settings can achieve better
performance.

C. Evaluation Results

The performance of our MSCFNet is evaluated with
several state-of-the-art ones in this part on the above
mentioned Cityscapes and CamVid datasets: FCN-8s [50],
DeepLabLFOV [51], Dilation8 [26], ENet [16], FSSNet [33],
SegNet [17], ERFNet [18], Fast-SCNN [49], ESPNet [36],
CGNet [47], NDNet [30], ContextNet [48], ICNet [37],
BiseNet [38], EDANet [27], DABNet [22], FarSeeNet [28],
LEDNet [23], DFANet [35], and EdgeNet [32].

As can be observed from Table III to Table V, the com-
parison results verify that our MSCFNet attains a better
balance between segmentation accuracy and efficiency. For the
Cityscapes dataset, our MSCFNet only has a 1.15M model
size but yields 71.9% class mIoU and 88.4% category mIoU,
respectively, even 74.2% class mIoU on the validation set.
Considering the efficiency, MSCFNet only occupies 15% of
the number of parameters of the ICNet but achieves a faster
speed and a better result. Although DABNet is almost 0.4M
smaller than our network, it delivers poor accuracy with
1.8% lower than our MSCFNet. For the CamVid dataset,
we can see that our model also gets remarkable performance
with a smaller capacity, and achieves 69.3% class mIoU on

the CamVid testing set, which is superior to most of the
existing competitive methods. Although DFANet has a faster
speed, it occupies almost 7× number of parameters than our
MSCFNet. As shown in these tables, our network makes
a good trade-off among model size, inference speed, and
segmentation accuracy. The qualitative comparisons with some
respective methods are also shown in Fig. 6 and Fig. 7, which
qualitatively verify the effectiveness of our MSCFNet.

V. CONCLUSION

In summary, we have proposed a multi-scale context fusion
network (MSCFNet), which improves both segmentation accu-
racy and inference speed for lightweight semantic segmenta-
tion task in this work. We designed an efficient asymmetric
residual (EAR) module, which adopts factorization depth-wise
convolution and dilation convolution to capture object fea-
tures with a lower number of parameters and computational
budgets using different receptive fields. Moreover, MSCFNet
had branches with efficient attention modules from different
stages extracting multi-scale contextual information. Then,
the features from these connections were combined to enhance
the expression of the features and facilitate the local and con-
textual information interaction greatly. Extensive experiments
on the CamVid and Cityscapes datasets have validated that our
architecture can attain a better balance between efficiency and
accuracy than several comparative approaches.
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