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Abstract— In real-world applications involving sparse cod-
ing and low-rank matrix recovery problems, linear regression
methods usually struggle to effectively capture the structured
correlations present in data matrices. This limitation arises
from representation approaches that treat images as vectors and
handle testing samples individually, overlooking these correla-
tions. To address these challenges, we propose a novel approach
that leverages the low-rank property to capture the global and
intrinsic structure of residual and coefficient matrices, departing
from the assumption of independent and identically distributed
(I.I.D) data. Our method introduces nonconvex and nonsmooth
low-rank matrix regression models guided by the extended matrix
variate power exponential distribution (M.P.E.D). By incorporat-
ing factorization strategies into the regression coefficient matrix
and utilizing the Schatten- p norm with three distinct values
of p, we enhance computational efficiency. Our formulation
enables efficient subproblem solving through the introduction
of auxiliary variables and the use of singular value threshold
operators. We achieve closed-form solutions using the pro-
posed multi-variable alternating direction method of multipliers
(ADMM). Theoretical analysis establishes the local convergence
properties and computational complexity of our optimization
algorithm. Furthermore, we conduct numerical experiments
on various image datasets, including face, object, and digital,
to demonstrate the superior performance and computational
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efficiency of our methods compared to several related regression
approaches. The source codes for our method are available at
https://github.com/ZhangHengMin/TIFS_SLRMFR.
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I. INTRODUCTION

IT IS well-known that sparse coding and low-rank matrix
recovery methods have made significant contributions to

various domains, including pattern recognition, computer
vision, and machine learning. These methods have found suc-
cessful applications in diverse areas, such as image recognition
[1], [2], [3], multimodal recognition [4], [5], finger-vein recog-
nition [6], [7], and image restoration and inpainting [8], [9].
They have also been widely employed in tasks such as classi-
fication and subspace clustering. Among the linear regression
techniques, Sparse Representation-based Classification (SRC)
[10] and Low-Rank Representation (LRR) [11] have received
considerable attention in this context. SRC aims to find the
sparsest solution for each data point independently, while
LRR seeks the lowest-rank solution for all the data jointly.
These methods have been extended and improved in various
ways, including Collaborative Representation Classification
(CRC) [12], Nuclear norm Matrix Regression (NMR) and its
faster version (FNMR) [13], Unifying Liner Regression (ULR)
[14], Adaptive Low-Rank Representation (ALPR) [15], Dis-
criminative Low-Rank Sparse Representation (DLRSR) [16],
Nonconvex Linear Regression related to ℓ21-norm (NLRℓ21)
[17], and Robust Supervised Low-Rank Discriminant Analysis
(RSLDA) [18]. These regression methods have been exten-
sively studied and applied, contributing to be an active area of
research, especially for image classification.

The methods discussed above exhibit versatility, applicable
to both one-dimensional vectors and two-dimensional matri-
ces. These methods leverage various norms to achieve specific
properties, including sparsity, collaboration, and low-rankness
[12], [13], [14]. At the vector level, norms like the ℓ1-norm,
ℓ2-norm, and ℓ2,1-norm are frequently employed. Similarly,
at the matrix level, norms such as the Frobenius norm,
L2,1-norm, and nuclear norm are utilized as seen in works
like [19], [20], and [21]. These norms play pivotal roles in
shaping optimization objectives and guiding the representation
process for coefficients and noise measurements. Alongside
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convex formulations, nonconvex approaches based on norms
such as the ℓp-norm, ℓ2,p-norm, and Schatten p-norm with
p ∈ (0, 1) have been explored as alternatives for unbiased
estimators. These nonconvex formulations act as substitutes
for promoting sparsity, group sparsity, and low-rankness, and
they have demonstrated advantages across various studies.
These approaches have been applied in [22], [23], [24], [25],
and [26]. A comprehensive analysis of the existing references
has revealed three common aspects, as detailed below:
• Regression models related to one-dimensional vectors

primarily focus on defining the loss function and regu-
larization term under the assumption of independent and
identically distributed (I.I.D) data [10], [13], [14]. These
models handle testing samples individually by employing
linear representations based on the training samples.

• Regression models related to two-dimensional matrices
consider the residual function and regularization term
while incorporating low-rank structural information [11],
[13], [27]. The incorporation of additional information
has been shown to enhance their performance, as demon-
strated in studies such as [12], [15], [16], [18], [28], [29],
and [30].

• Some linear regression methods utilize nonconvex relax-
ations of the ℓ0-norm, ℓ2,0-norm, and rank function,
which provide nearly unbiased estimators [19], [20],
[22], [23], [26]. However, these optimization algorithms
often suffer from higher complexity, particularly when
dealing with large-scale matrices, due to the computations
involved in singular value decomposition (SVD).

In this work, we address the aforementioned challenges
by introducing three main contributions. Firstly, we propose
a novel approach that adopts a joint representation method
inspired by the matrix variate distribution for testing samples,
enabling us to capture sample relationships and incorpo-
rate additional information into the representation process.
Instead of treating testing samples independently, we con-
sider them collectively, allowing for a more comprehensive
representation. Secondly, we incorporate low-rank structures
into the representation of the residual and coefficient matri-
ces. By enforcing a low-rank property on the coefficient
matrix, we effectively capture the underlying structure of the
data and improve representation quality. This incorporation
of low-rankness enhances the discriminative power of the
algorithm. Lastly, we enhance computational efficiency by
factorizing the coefficient matrix into two factor matrices. This
factorization significantly reduces computational complexity,
thereby enhancing the algorithm’s efficiency. Furthermore, the
resulting theoretical analysis provides support for practical
applications. To illustrate our design process, we provide a
representation relation in Fig. 1, which demonstrates that the
testing image can be represented as a linear combination of
the training samples and an error image. Notably, we take
into account each residual image matrix while leveraging the
global structure of the coefficient matrix. This approach allows
us to capture pixel dependencies and enforce the low-rank
property on the coefficient matrix, as demonstrated in previous
works [11], [13], [20], [23], [27], [31]. By preserving the
relationships within these matrices, we introduce the concept

Fig. 1. Revisiting the matrix level in equation (1) through the interconnect-
edness of training, testing, and error images.

of matrix regression, as defined in Definition 1. This allows
us to collectively represent the testing samples and integrate
low-rank structures into the representation process, providing
a solution.

Based on the flowchart depicted in Fig. 1, our approach
involves jointly representing testing samples at the matrix
level, successfully considering both the residual and coefficient
matrices. This enables us to capture the underlying structure
and dependencies present in the data, resulting in more infor-
mative and accurate representations. Meanwhile, we propose
the Schatten-p Norm Factorized Low-rank Matrix Regression
(SpNFLMR) methods. These methods are optimized using
the multi-variable ADMM algorithm [32], [33], [34], which
involves computing the SVD and determining smaller factor
matrices, which help in preserving the low-rank property and
improving the computational efficiency. To better evaluate
the performance, we apply them to image reconstruction and
classification tasks and compare their performance against
existing methods. This motivates us to assess the classification
accuracy and computational efficiency of the methods and
provide visual results from different viewpoints to facilitate
a comprehensive comparison. Through this comprehensive
evaluation, our main objective is to validate the effectiveness
and efficiency of the proposed SpNFLMR methods.

The subsequent sections are organized as follows: Section II
introduces the problem formulations from a probabilistic
distribution perspective and presents the factorized formulas
that form the basis of our approach. Sections III and IV
provide a detailed explanation of the iterative algorithm’s
development using the ADMM framework, along with prov-
able analysis of its convergence properties. In Section V,
we present experimental results to demonstrate the exceptional
classification accuracy and computational efficiency achieved
by our approach. Finally, in Section VI, we conclude the
work by summarizing the key findings and discussing potential
avenues for future research.

II. PROBLEM FORMULATION

This section begins by introducing matrix regression and
highlighting the relationship between the error matrix E and
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the coefficient matrix X, as depicted in Fig. 1. To capture
the interactions between these matrices, we propose a novel
representation framework inspired by the matrix variate power
exponential distribution (M.P.E.D) [35], [36]. This framework
enables us to effectively model and analyze the dependencies
and relationships that exist within the data.

Definition 1: Let Ai be a column vector of dimension
lq × 1, where l is the number of rows and q is the number
of columns. The training database is represented by A =
[A1, A2, . . . , Am] ∈ Rlq×m . For a testing sample Yi ∈ Rlq×1,
the linear representation is given by

M(Yi ) = A(Xi )+M(Ei ), (1)

where M(·) : Rlq
→ Rl×q transforms a vector into a

matrix. Here, M(Ei ) represents the residual matrix, Xi =

[Xi1, Xi2, . . . , Xim]
⊤
∈ Rm×1 is the coefficient vector, and

X = [X1, X2, . . . , Xn] ∈ Rm×n is the coefficient matrix. The
reconstructed image matrix is given by A(Xi ) = Xi1M(A1)+

Xi2M(A2)+ . . .+ XimM(Am).
To capture the characteristics of the residual and coefficient

matrices, we depart from the assumption of independent and
identically distributed (I.I.D.) elements and introduce a specific
definition for the random matrices used in this study.

Definition 2: Consider a random matrix Z ∈ Rl×n that
follows a l × n variate power exponential distribution with
parameters M ∈ Rl×n , 6 ∈ Rl×l , 8 ∈ Rn×n , and p, β > 0.
Then, the density function of Z can be defined as

f (Z, M, 6,8, p, β)

= C|6|−
n
2 |8|−

l
2 e
−

1
2

(
tr[(Z−M)⊤6−1(Z−M)8−1

]

p
2

) β
2

, (2)

where C =
ln0

(
ln
2

)
π

ln
2 0

(
1+ ln

2p

)
21+ ln

p
and 0(·) denotes the Gamma

function. Here, we use the notation Z ∼ 4(M, 6,8, p, β) to
represent the distribution for simplicity.

By setting M = 0, 6 = Il×l , 8 = In×n , and β = 1 in (2),
we obtain Z ∼ 4 (0, Il×l , In×n, p, 1). Then, we have

f (Z, 0, Il×l , In×n, p, 1) = Ce−
1
2 tr
(
Z⊤Z

) p
2
, (3)

where C is a constant determined by (2). Taking the logarithm
of both sides of (3), we obtain

ln f (Z, 0, Il×l , In×n, p, 1) = ln C−
1
2

tr
(

Z⊤Z
) p

2
. (4)

Proof Based on the assumptions and definitions stated in
Definitions 1 and 2, we can deduce the following

P(M(Ei )|Xi ) = C1e−
1
2 tr
(
(M(Ei ))

⊤(M(Ei ))
) p

2

, (5)

P(X) = C2e−
1
2 tr
(
X⊤X

) p
2
, (6)

where C1 and C2 are positive proportionality constants. Con-
sequently, the estimation of the coefficient matrix X can
be obtained by solving the Maximum a Posteriori (MAP)
probability problem, which is formulated as follows

X∗ = argmaxXlnP(X|E)

= argmaxXlnP(E|X)+ lnP(X)

= argmaxXln
n∏

i=1

n∏
j=1

P(M(Ei )|X j )+ lnP(X)

= argmaxX

n∑
i=1

m∑
j=1

lnP(M(Ei )|X j )+ lnP(X)

= argmaxX

n∑
i=1

lnP(M(Ei )|Xi )+ lnP(X)

= argmaxX −
1
2

n∑
i=1

tr
(
(M(Ei ))

⊤ (M(Ei ))
) p

2

−
1
2

tr
(

X⊤X
) p

2
+ ln(C1C2) (7)

where the fifth equality “=” in the statement holds because
Pi ̸= j (M(Ei )|X j ) = 0. By using (2), (5), (6), and (7), and
introducing a regularization parameter λ > 0, we arrive at the
following optimization problem:

minX,E

n∑
i=1

tr
(
(M(Ei ))

⊤ (M(Ei ))
) p

2
+ λtr

(
X⊤X

) p
2

s.t. E = Y− AX, (8)

which is equivalent to (9) based on the definition of the
Schatten-p norm, i.e., ∥X∥p

Sp
= tr

(
X⊤X

) p
2 . □

Theorem 1: For 1 ≤ i ≤ n, let M(Ei ) =M(Yi )−A(Xi )

be a random matrix following an E. M. P. E distribution,
specifically M(Ei ) ∼ 4(0, Il×l , Iq×q , p, 1). In addition, let
X ∈ Rm×n follow this probability distribution. Thus, the joint
low-rank matrix regression model can be formulated as:

minX

n∑
i=1

∥M(Yi )−A(Xi )∥
p
Sp
+ λ∥X∥p

Sp
. (9)

Remark 1: Problem (9) provides the flexibility to inte-
grate low-rank structures simultaneously into the error
measurements and representation coefficients, as shown in
Fig. 2(a) and (b). By utilizing the Schatten-p norm, it gives
improved correlation and adaptability to structural noises [13],
[23] compared to convex norms that I.I.D. noise. For example,
the L1-norm assumes the Laplace distribution, while the
Frobenius norm assumes the Gaussian distribution.

Remark 2: As the number of training and testing samples
increases, the computational complexity of updating the matrix
X ∈ Rm×n becomes higher, especially when m > n. This is
primarily due to the computations involved in the SVD, which
is commonly used for solving low-rank matrix minimization
problems and has a complexity of o(mn2). It is important
to discuss the distinctiveness of our factorization strategy in
comparison to other acceleration techniques, such as:
• Utilization of nesterov’s strategy and extragradient tech-

nique [22], [37]: These strategies are effective in
algorithm designs aimed at curtailing the total iteration
count.

• Analogous to the process in power methods and ran-
domized SVD [33], [38]: These techniques follow a
similar processing approach with the goal of diminishing
computational complexity within each iteration.
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Fig. 2. The illustrations consist of plotted curves depicting singular values
and the distribution of element values for an error matrix sized 60× 43 (top
row). Additionally, correlation matrices are showcased as heatmaps in both
row-wise and column-wise representations (bottom row) in (a), all related to
a face image of the AR database. In (b), the prevalent factorization of the
coefficient matrix is displayed, emphasizing its block-diagonal property.

Notably, this addition aims to enhance the understanding of
the unique features of our approach while also acknowledging
the effectiveness and efficiency of alternative acceleration
strategies. Then, the utilization of a factorization technique
for Schatten-p norm, as illustrated in Fig. 2 (b), is a natural
step to address this challenge and is logically sound.

Definition 3: Let X = UV⊤ ∈ Rm×n , where U ∈ Rm×d

and V ∈ Rn×d , with rank(X) = r ≤ d ≤ min(m, n). For any
p, q1, and q2 > 0 satisfying 1

p =
1
q1
+

1
q2

, we have

1
p
∥X∥p

Sp
= minU,V

1
q1
∥U∥q1

Sq1
+

1
q2
∥V∥q2

Sq2
, (10)

which leads to the following equivalences: (i) ∥X∥∗ =
minU,V

1
2 (∥U∥2F + ∥V∥

2
F ) for p = 1, q1 = 2, and q2 = 2,

(ii) ∥X∥2/3
S2/3
= minU,V

1
3 (∥U∥2F+2∥V∥∗) for p = 2/3, q1 = 2,

and q2 = 1, and (iii) ∥X∥1/2
S1/2
= minU,V

1
2 (∥U∥∗ + ∥V∥∗) for

p = 1/2, q1 = 1, and q2 = 1.
The cases outlined in Definition 3 correspond to specific

values of p. These values have also been investigated in the
case of p = 1 in studies like [21], [39], [40], and for p = 1/2
and 2/3 in [41], [42]. Then, we can introduce a substitution
of the Schatten-p norm with the minimization of the sum of
two norms, denoted as gq1,q2(U, V), for cases (i)-(iii). This
substitution is not only meaningful but also aligned with the

motivation presented in Remark 2, as it effectively reduces
computational complexity. The sizes of the factor matrices U
and V depend on the number of training and testing samples.
Without loss of generality, by combining (9) and (8) with (10),
we formulate the optimization problem:

minU,V,X,E

n∑
i=1

∥M(Ei )∥
p
Sp
+ λgq1,q2(U, V),

s.t. E = Y− AX, X = UV⊤, (11)

where to analyze the solution to problem (11) for different
values of p in the Schatten-p norm, we consider specific
values of p and their corresponding choices of q1 and q2.
The factorization formulations can be expressed as follows:
• When p = 1, we choose g2,2(U, V) = 1

2 (∥U∥2F +∥V∥
2
F )

in (11), and then (11) becomes the minimization problem
based on nuclear norm factorization, i.e.,

minU,V,X,E

n∑
i=1

∥M(Ei )∥
1
S1
+

λ

2
(∥U∥2F + ∥V∥

2
F )

s.t. E = Y− AX, X = UV⊤. (12)

• When p = 2/3, we choose g2,1(U, V̂) = 1
3 (∥U∥2F +

2∥V̂∥∗) in (11), and also introduce V̂ = V in the
constraints, then (11) becomes the minimization problem
based on Schatten-2/3 norm factorization, i.e.,

minU,V,V̂,X,E

n∑
i=1

∥M(Ei )∥
2/3
S2/3
+

λ

3
(∥U∥2F + 2∥V̂∥∗)

s.t. E = Y− AX, X = UV⊤, V̂ = V. (13)

• When p = 1/2, we choose g1,1(Û, V̂) = 1
2 (∥Û∥∗+∥V̂∥∗)

in (11), and also introduce Û = U and V̂ = V in the
constraints, then (11) becomes the minimization problem
based on Schatten-1/2 norm factorization, i.e.,

minU,V,V̂,Û,X,E

n∑
i=1

∥M(Ei )∥
1/2
S1/2
+

λ

2
(∥Û∥∗ + ∥V̂∥∗)

s.t. E = Y− AX, X = UV⊤, V̂ = V, Û = U. (14)

To obtain a closed-form solution for each subproblem in
solving problems (13) and (14), the introduction of auxiliary
variables such as V̂ and Û is advantageous. This approach
allows us to utilize gq1,q2(U, V) and apply the singular
value thresholding operator [43], which is associated with
the nuclear norm. Alternatively, when auxiliary variables are
not introduced as splitting variables, linearized strategies,
as employed in [17], [37], and [44], are often used for
the square term. In general, the optimization of most con-
strained minimization problems involves iterative optimization
methods, such as modified ADMM [42], [45], [46], [47].
These algorithms offer a substantial reduction in computa-
tional complexity through the factorization of the low-rank
matrix. However, it is essential to engage in a comprehensive
discussion regarding the potential challenges and intricacies
associated with integrating complexity reduction into our
proposed algorithms. This can be achieved by examining two
key perspectives:
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• On the one hand, the adoption of complexity reduction
strategies entails the incorporation of matrix factor-
ization, specifically Z = UV⊤. In our approach,
we have opted for the widely used Schatten p-norm
[41], [42], as other nonconvex rank relaxation functions
may lack readily available factorization formulas. The
presence of closed-form or analytic solutions for the
associated subproblems greatly enhances computational
efficiency. Thus, both factorization formulas and closed-
form/analytic solutions are fundamental prerequisites for
the successful implementation of our proposed approach.

• On the other hand, implementing the factorization strat-
egy for low-rank matrices inherently introduces the
complexity of managing multiple variables, a challenge
crucial for ensuring convergence guarantees, as high-
lighted in [34]. Importantly, the incorporation of mul-
tiple variables naturally intensifies the computational
workload, particularly during the optimization process
involving SVD for large-scale matrix computations.
Nevertheless, it is essential to acknowledge that the
dimensions of the factor matrices are significantly smaller
when compared to the learned low-rank matrix. This
distinct attribute has substantially influenced our decision
to capitalize on it, aiming to curtail computational com-
plexity.

III. THE OPTIMIZATION SCHEME

In this section, we will employ the ADMM approach to
solve problems (12), (13), and (14). To simplify and introduce
commonly used functions, we define the following:

f1,µk (01, E, X) = ⟨01, E+ AX− Y⟩

+
µk

2
∥E+ AX− Y∥2F , (15)

f2,µk (02, X, U, V) = ⟨02, X− UV⊤⟩

+
µk

2
∥X− UV⊤∥2F , (16)

f3,µk (03, V, V̂) = ⟨03, V̂− V⟩ +
µk

2
∥V̂− V∥2F , (17)

f4,µk (04, U, Û) = ⟨04, Û− U⟩ +
µk

2
∥Û− U∥2F , (18)

where ⟨·, ·⟩ represents the inner product operator. The dual
variables 01, 02, 03, and 04 are introduced, and the penalty
parameter µk+1

= ρµk > 0 is commonly used to accelerate
the convergence speed, where ρ > 1. Empirical analysis
suggests that larger values of ρ can lead to fewer iterations but
lower accuracy, while smaller values of ρ can result in more
iterations but higher accuracy. The augmented Lagrangian
functions (ALFs) for solving problems (12), (13), and (14)
are then defined as follows:
• Using (15) and (16) for p = 1, we have

L1,µk (U, V, X, E, 01, 02)

=

n∑
i=1

∥M(Ei )∥
1
S1
+ f1,µk (01, E, X)

+
λ

2
(∥U∥2F + ∥V∥

2
F )+ f2,µk (02, X, U, V), (19)

• Using (15)-(17) for p = 2/3, we obtain

L2/3,µk (U, V, V̂, X, E, 01, 02, 03)

=

n∑
i=1

∥M(Ei )∥
2/3
S2/3
+ f1,µk (01, E, X))

+
λ

3
(∥U∥2F + 2∥V̂∥∗)+ f2,µk (02, X, U, V)

+ f3,µk (03, V, V̂), (20)

• Using (15)-(18) for p = 1/2, we achieve

L1/2,µk (U, V, V̂, Û, X, E, 01, 02, 03, 04)

=

n∑
i=1

∥M(Ei )∥
1/2
S1/2
+ f1,µk (01, E, X))

+
λ

2
(∥Û∥∗ + ∥V̂∥∗)+ f2,µk (02, X, U, V)

+ f3,µk (03, V, V̂)+ f4,µk (04, U, Û), (21)

where in the subsequent iterations of the nonconvex multi-
variable ADMM, we address a sequence of equations (19) to
(21) to update primal variables, dual variables, and penalty
parameters sequentially. We place particular emphasis on
elucidating our rationale behind the utilization of the ADMM
algorithm, aiming to foster a transparent understanding of
our choice. In this context, we provide a concise overview:
ADMM was selected due to its proven effectiveness in deal-
ing with constrained optimization problems. The algorithm’s
ability to derive closed-form solutions for each subproblem
significantly contributes to its computational efficiency. This
selection aligns with our optimization objectives, striking
a balance between robustness and computational simplic-
ity. Therefore, it is essential to comprehensively explain
our selection to employ the ADMM algorithm, highlighting
its compatibility with our specific problem’s characteristics.
Moreover, to solve the individual subproblems arising from
equations (19) to (21), we seek closed-form solutions by
minimizing optimization problems grounded in the Schatten-p
norm, where p = 1, 2/3, and 1/2. This approach is crucial
for managing residual descriptions and factorization strategies
for coefficient matrix. To achieve this, we introduce singular
value thresholding operators, a technique extensively utilized
in previous studies [23], [41], [42], [48] and presented below
for reference.

Proposition 1: Let 362⊤ be the SVD of a matrix D ∈
Rl×q satisfying 33⊤ = I and 22⊤ = I for the identity
matrix I, and assume 6 = diag({σ j }1≤ j≤r ) with r =
min(l, q). For each of positive singular value σ j and κ > 0,
we provide the singular value function shrinkage operators of
the problem

min
E

κ∥E∥p
Sp
+

1
2
∥E− D∥2F , (22)

where the optimal solver, denoted as E∗, for p = 1, 2/3, and
1/2, will be respectively represented as below.
• For p = 1, we have

E∗ = Sκ (D) = 3diag({max(σi − κ, 0)})2⊤. (23)
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• For p = 2/3, we have

E∗ = Tκ (D) = 3diag({θ(σi ) · ξ})2
⊤, (24)

where 

θ(σi ) = ((ϖ +

√
2σi/ϖ −ϖ 2)/2)3,

ϖ =
2
√

3
(2β)1/4cosh(φ/3)1/2,

φ = arccosh

(
27σ 2

i
16

(2β)−1.5

)
, ξ =1, σi >

2
3
(3(2β)3)1/4,

0, otherwise.
(25)

• For p = 1/2, we have

E∗ =Wκ (D) = 3diag({θ(σi ) · ξ})2
⊤, (26)

where 
θ(σi ) =

2
3
σi

(
1+ cos

(
2π

3
−

2
3
ϕ

))
,

ϕ = arccos
(

β

4
(
σi

3
)−1.5

)
, ξ =1, σi >

3√54
4

(2η)2/3,

0, otherwise.
(27)

where the closed-form solutions for the involved Schatten-p
norm subproblems can be obtained by using equations (23),
(24), and (26). These equations provide the necessary oper-
ations to compute the updated variables, namely E, V̂, and
Û. By leveraging these closed-form solutions, an effective
optimization process is achieved, which facilitates faster con-
vergence and improves computational efficiency.

Given the variables at the k-th iteration, i.e., {Uk, Vk, V̂k,

Ûk, Xk, Ek
}, we update the variables at the (k+1)-th iteration

by minimizing (19)-(21) with respect to U, V, V̂, Û, E, and X.
Subsequently, we update the dual variables according to the
following rules:

0k+1
1 = 0k

1 + µk(Ek+1
+ AXk+1

− Y), (28)

0k+1
2 = 0k

2 + µk
(

Xk+1
− Uk+1(Vk+1)⊤

)
, (29)

0k+1
3 = 0k

3 + µk
(

V̂k+1
− Vk+1

)
, (30)

0k+1
4 = 0k

4 + µk
(

Ûk+1
− Uk+1

)
, (31)

where the closed-form solutions for the (k + 1)-th iteration
can be easily obtained using Proposition 1. These solutions
involve matrix computations that include derivatives and mul-
tiplications based on equations (28)-(31).

A. Updating Uk+1 and Vk+1

By optimizing (19), we compute the derivatives with respect
to U and V and set them to zero. This allows us to find the
updated variables Uk+1 and Vk+1 by solving

arg min
U

λ

2
∥U∥2F + f2,µk (0

k
2, Xk, U, Vk)

=

(
Xk
+

0k
2

µk

)
Vk
(

λI
µk + (Vk)⊤Vk

)−1

, (32)

arg min
V

λ

2
∥V∥2F + f2,µk (0

k
2, Xk, Uk+1, V)

=

(
Xk
+

0k
2

µk

)⊤
Uk+1

(
λI
µk + (Uk+1)⊤Uk+1

)−1

. (33)

Similar to (32) and (33), we optimize (20) and obtain the
updates for Uk+1 and Vk+1 through

arg min
U

λ

3
∥U∥2F + f2,µk (0

k
2, Xk, U, Vk)

=

(
Xk
+

0k
2

µk

)
Vk
(

2λI
3µk + (Vk)⊤Vk

)−1

, (34)

arg min
V

f2,µk (0
k
2, Xk, Uk+1, V)+ f3,µk (0

k
3, V, V̂k)

=

(V̂k
+

0k
3

µk

)
+

(
Xk
+

0k
2

µk

)⊤
Uk+1


×

(
I+ (Uk+1)⊤Uk+1

)−1
. (35)

By optimizing (21), we update Uk+1 based on the compu-
tational method described in (35), resulting in

arg min
U

f2,µk (0
k
2, Xk, U, Vk)+ f4,µk (0

k
4, U, Ûk)

=

[(
Ûk
+

0k
4

µk

)
+

(
Xk
+

0k
2

µk

)
Vk+1

]
×

(
I+ (Vk)⊤Vk

)−1
. (36)

In particular, when updating both Uk+1 and Vk+1, it is
advantageous to incorporate an adaptive rank tuning technique
[41], [49]. This technique helps estimate the value of d , which
corresponds to the rank of the low-rank matrix. By selecting
a suitable rank value, we can strike a balance between com-
putational complexity and clustering performance.

B. Updating Ûk+1 and V̂k+1

In the optimization problem (19), the variables Ûk+1 and
V̂k+1 are not explicitly involved. However, in the optimization
problem (20), only V̂k+1 is included. Furthermore, in the opti-
mization problem (21), both Ûk+1 and V̂k+1 are present. These
auxiliary variables are introduced to simplify the optimizations
and enable closed-form solutions.

Fixing other unrelated variables and combining (23) with
(20), we can observe that updating V̂k+1 involves

arg min
V̂

2λ

3
∥V̂∥∗ + f3,µk (0

k
3, Vk+1, V̂)

= S2λ/3µk

(
Vk+1

−
0k

3
µk

)
. (37)

By optimizing (21) to update V̂k+1 and Ûk+1, we can derive
the following solution formulas

arg min
V̂

λ

2
∥V̂∥∗ + f3,µk (0

k
3, Vk+1, V̂)
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= Sλ/2µk

(
Vk+1

−
0k

3
µk

)
, (38)

arg min
Û

λ

2
∥Û∥∗ + f4,µk (0

k
4, Uk+1, Û)

= Sλ/2µk

(
Uk+1

−
0k

4
µk

)
. (39)

C. Updating Xk+1 and Ek+1

Fixing the unrelated variables and computing the derivatives
with respect to X, we can set the derivative value to zero to
obtain the following closed-form solutions for (19)-(21) based
on the (k + 1)-th iterate for Xk+1:

arg min
X

f1,µk (01, E, X)+ f2,µk (0
k
2, X, Uk+1, Vk+1)

=

(
I+ A⊤A

)−1
×

[
A⊤

(
Y − Ek

−
0k

1
µk

)

+

(
Uk+1(Vk+1)⊤ −

0k
2

µk

)]
, (40)

where A = [A1(:), A2(:), . . . , An(:)] ∈ Rlq×m is defined
as the data matrix generated from all the training samples.
Furthermore, we observe that I + A⊤A remains unchanged
when the databases are fixed. Therefore, it can be computed
outside the iteration loop to avoid repeated computations.

By fixing other unrelated terms with Ek
i , we reformulate

equation (15) as follows
n∑

i=1

f1,µk (0
k
1,i , Ek

i , Xi )=̂
µk

2
∥Ek
+ AX− Y+

0k
1

µk ∥
2
F . (41)

where we can rewrite f1,µk (0k
1,i , Ei , Xk+1

i ) =
µk

2 ∥M(Ei ) −

hµk (Xk+1
i , 0k

1,i )∥
2
F with hµk (Xk+1

i , 0k
1,i ) = M(Yi ) −

A(Xk+1
i ) −

M(0k
1,i )

µk . By combining equations (19)-(21)
and (41), we can transform the sub-problems for iteratively
updating Ek+1 into the following optimization problem

arg min
M(Ei )

∥M(Ei )∥
p
Sp
+ f1,µk (0

k
1,i , Ei , Xk+1

i ), (42)

where, based on Proposition 1, we can obtain the analytic
solvers for (42) with three different p-values as follows

M(Ek+1
i )=


S1/µk

(
hµk (Xk+1

i , 0k
1,i )
)

, p=1,

T1/µk

(
hµk (Xk+1

i , 0k
1,i )
)

, p=2/3,

W1/µk

(
hµk (Xk+1

i , 0k
1,i )
)

, p=1/2.

(43)

After obtaining the vectors Ek+1
i for 1 ≤ i ≤ n from (43) in

parallel to improve computational efficiency, we can construct
the residual matrix Ek+1 by concatenating these individual
vectors. Specifically, we form Ek+1 by horizontally combining
the vectors: Ek+1

= [Ek+1
1 , Ek+1

2 , . . . , Ek+1
n ]. This updated

matrix Ek+1 will be utilized in the subsequent iterations.
In summary, the iteration procedure for solving problems

(12)-(14) can be outlined in Algorithm 1. The algorithm

Algorithm 1 Optimization for Problem (11)

Input: Y, X1, U1, V1, V̂1, Û1, and {00
i }1≤i≤4

Parameter: λ, p, d ≥ r , ρ = 1.1, µ0 and k = 0
Output: X∗← Xk+1

1: while not converged do
2: if p = 1
3: update Uk+1 and Vk+1 by (32) and (33),
4: update Xk+1 by (22),
5: update Ek+1 by (43) with p = 1,
6: update 0k+1

1 and 0k+1
2 by (28) and (29),

7: elseif p = 2/3
8: update Uk+1 and Vk+1 by (34) and (35),
9: update V̂k+1 by (37),

10: update Xk+1 by (22),
11: update Ek+1 by (43) with p = 2/3,
12: update 0k+1

1 , 0k+1
2 and 0k+1

3 by (28)-(30),
13: else
14: update Uk+1 and Vk+1 by (36) and (35),
15: update V̂k+1 and Ûk+1 by (38) and (39),
16: update Xk+1 by (22),
17: update Ek+1 by (43) with p = 1/2,
18: update 0k+1

1 , 0k+1
2 , 0k+1

3 and 0k+1
4 by (28)-(31),

19: end
20: end while

initializes the Lagrange multipliers, primal variables, and
parameters according to the technique suggested in [41],
[42], and [44]. The algorithm continues iterating until the
stopping criteria are met, which is determined by the following
condition:

∥Ek+1
+ AXk+1

− Y∥F

∥Y∥F
< ϵ, (44)

where 0 < ϵ ≪ 1 is a pre-defined threshold value. To eval-
uate the classification accuracy, we design a classification
criterion using the Schatten-p norm with three different p-
values, as proposed in [12] and [13]. Based on the coefficient
matrix X∗, we calculate the class-wise error matrices for all
the testing samples and assign the final label to the i-th testing
sample Yi . The final label can be determined by

Label(Yi ) = argmin j

∥Mat(Yi )−Ac j (X∗i,c j
)∥

p
Sp

∥X∗i,c j
∥2

, (45)

where X∗i,c j
represents the coefficient vector associated with

the i-th testing sample for the j-th class, denoted as c j ,
training samples, and Ac j (X∗i,c j

) represents the reconstructed
image matrix for class c j . The computable Label(Yi ) is
determined by selecting the value on the right side of the “=”
sign that is the smallest among all 1 ≤ j ≤ n, indicating the
class with the lowest reconstruction error for Yi .

IV. THEORETICAL ANALYSIS

In this section, we present the computational complexity
of Algorithm 1, and then present the algorithmic convergence
property. The detailed analysis was given as below.

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on December 17,2023 at 10:10:05 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: EFFICIENT IMAGE CLASSIFICATION VIA STRUCTURED LOW-RANK MATRIX FACTORIZATION REGRESSION 1503

• For the computational complexity in (32)-(43)., it mainly
depends on the computations of the SVD of the error
matrix Mat(Ei ) and the factorized matrix Û and V̂ along
with the matrix multiplications for updating X, U, and
V, respectively. For the studied cases, the complexity of
updating E and X is o(nlq2) and o(mnς +m2n +mdn)

for l ≥ q and ς = lq, For p = 2/3, the complexity
of computing V̂ is o(nd2), while for p = 1/2, the total
complexity of computing V̂ and Û is o((m+n)d2). Then,
we give the complexity of updating U and V as follows
– the computational complexity of updating U is the

same, i.e., o(d3
+2nd2

+mdn), for the three p-values.
– the computational complexity of updating V is o(d3

+

2md2
+mdn) for p = 1 as well as o(d3

+(n+m)d2
+

mdn) for both p = 2/3 and p = 1/2, respectively.
• For the convergence property, we theoretically prove the

boundedness of generated variable sequences and the
satisfied Karush-Kuhn-Tucker (KKT) conditions.
– We prove the boundedness of the generated variable

sequences, both the dual variables {0k+1
i }

4
i=1 and the

primal variables involved in (12)-(14). This shows that
these variable sequences remain within certain bounds,
ensuring the stability of the optimization process.

– The global convergence of the generated variable
subsequences are proved theoretically, which can be
exploited to characterize the cluster point.

We next present a brief overview of two important concepts:
the dual norm [33] and the sub-differential of the singu-
lar value function [9], [50]. Understanding these concepts
is essential for analyzing the convergence of our proposed
methods.

Lemma 1: Let H be a real Hilbert space endowed with an
inner product ⟨·, ·⟩ and a corresponding norm ∥ · ∥, and z ∈
∂∥y∥, where ∂ f (y) denotes the sub-gradient of f (y). Then
∥z∥∗ = 1 if X ̸= 0, and ∥z∥∗ ≤ 1 if X = 0, where ∥z∥∗ is the
dual norm of ∥z∥. For example, the dual norm of the nuclear
norm is the spectral norm ∥ · ∥2, i.e., the largest singular value
of given matrix.

Lemma 2: Let F(X) : Rl×m
→ R be the corresponding

singular value function f ◦ σ(X) at a matrix X, and f (·) :

Rm
→ R is an absolutely symmetric function, then assume

that X = 362⊤ is the SVD of X, then the sub-differential
of F(·) at X is given by the following formula

∂ F(X)

∂X
= ∂( f ◦ σ)(X) = 36̂2⊤, (46)

where 6̂i i =
∂ f (y)
∂y |y=6i i holds for 1 ≤ i i ≤ m.

Proposition 2: Let (Uk, Vk, V̂k, Ûk, Xk, Ek) be the multi-
variable sequence as well as the dual variable sequence
{0k+1

i }
4
i=1 generated from Algorithm 1, and we assume that

µk(Ek
− Ek+1) is bounded. Then, we have the assertions:

(i) the dual variables {0k+1
i }

4
i=1 are bounded, and

(ii) the primal ones (Uk, Vk, V̂k, Ûk, Xk, Ek) involved in
the problems (12)-(14) are also bounded for three cases.

Theorem 2: Let (Uk, Vk, V̂k, Ûk, Xk, Ek) be a
variable sequence along with the dual variable sequence
{0k+1

i }
4
i=1 generated by Algorithm 1, and assume the

TABLE I
STATISTIC DESCRIPTIONS OF INVOLVED SIX EXPERIMENTAL DATABASES

Fig. 3. Partial images from six databases (faces, objects, and digital images)
with various variations such as occlusions and illuminations. The images on
the left are for training, and the ones on the right are for testing.

same conditions as stated in Proposition 2. Under the
additional condition that µk(T k

− T k+1) → 0 as k → +∞,
where T k

= (Vk, Xk, Ek), any cluster point, denoted
as (U∗, V∗, V̂∗, Û∗, X∗, E∗) and {0∗i }

4
i=1, obtained from

the variable sequence, is a stationary point with respect
to (19)-(21). Moreover, the choices of these variables satisfy
the KKT conditions for the cases of p = 1, 2/3, and 1/2.

It should be mentioned that we provide the detailed proofs
of the theoretical results, i.e., Proposition 2 and Theorem 2,
in the supplementary materials.

V. NUMERICAL EXPERIMENTS

This section starts by providing statistics on six widely
used image databases, which are summarized in TABLE I.
The selected images from these databases are also showcased
in Fig. 3 (a)-(f). Subsequently, we provide comprehensive
descriptions of each experimental image database, highlighting
their unique characteristics and applications.
• The AR database contains images of 100 individuals,

including samples with scarf occlusions, making it a chal-
lenging dataset for face recognition tasks. The FERET
database consists of images with frontal, left, or right pro-
file views, showcasing variations in pose, expression, and
lighting conditions. We specifically selected a subset of
1400 images, representing 200 individuals. The ExYaleB
database comprises images of 38 subjects captured under
various illuminations, providing valuable insights into
illumination robustness in face recognition.

• The COIL20 object database consists of 600 images
depicting 20 different objects. Each image features
the main body of the object centered against a black
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background, and multiple horizontal angles are cap-
tured, providing diverse views for each object. The
FLAVIA database focuses on leaf classification and
contains images of leaves from various plant species.
Each leaf species exhibits unique variations in shape,
length, and width, making it a suitable dataset for
studying leaf classification tasks. We specifically selected
1600 images representing 32 different leaf species. The
MNIST database is a well-known dataset widely used
for handwriting digit recognition. It includes multiple
handwritten digits ranging from 0 to 9, making it a valu-
able resource for training and evaluating digit recognition
algorithms.

The selected databases used in our experiments are pub-
licly available and can be easily loaded. We conducted the
experiments without any pre-processing, using the training and
testing samples directly. The experiments were performed on a
64-bit PC with an Intel(R) Core(TM) i7-7700 CPU@3.6GHz
and 8.0GB RAM, utilizing MATLAB R2021b. To compare
our proposed SpNFLMR approach, we implemented and
compared several mostly related methods, including CRC
[12], NMR with its faster version (FNMR) [13], ULR∗ [14],
ULR∗∗ [14], ALPR [15], DLRSR [16], NLRℓ21 [17], RSLDA
[18], and generalized iterated shrinkage algorithm (GISA)
with three p-values [24]. Note that ULR∗ and ULR∗∗ are
specific instances of the ULR model [14], and GISA1 and
SRC share the same model formulations while utilizing differ-
ent optimization algorithms. For conducting the comparisons,
we meticulously fine-tuned the parameters of these methods
to achieve the best possible performance and computational
efficiency. In contrast, our proposed SpNFLMR approach, for
p = 1, 2/3, and 1/2, consistently demonstrated effectiveness
and robustness across all three scenarios.

A. Experiments on Face Databases

The results presented in TABLE II provide a compre-
hensive comparison between our proposed methods and ten
other approaches across three face databases. Upon analyz-
ing the results, it becomes apparent that CRC, ULR, and
GISA exhibit lower timing costs due to their differentiable
objective functions and overall approach to processing testing
data. In contrast, methods such as NMR and FNMR incur
higher time costs as they compute the coefficient represen-
tation for each individual testing data independently. Our
proposed methods, along with NLRℓ21, NMR, and FNMR,
effectively leverage the low-rank structure information, result-
ing in improved classification accuracy while consistently
demonstrating lower timing costs. This highlights the higher
efficiency of our factorization strategies and validates the
superior classification accuracy they offer. On the other hand,
ALPR, DLSR, and RSLDA achieve lower classification accu-
racy compared to some of the comparative methods due to
their reliance on inexact measurements of the residual function
in these datasets. This suggests that our methods are better
suited for capturing the inherent structure and leading to
enhanced accuracy.

To further validate the effectiveness of our proposed meth-
ods, Fig. 4 (a) shows the curves of the stopping function on the

TABLE II
CLASSIFICATION ACCURACY (%) AND COMPUTATION TIMES

OF THE METHODS USED ON THREE FACE DATABASES

Fig. 4. Visual comparisons of the influences of our methods with three
different p-values are shown for three face databases. The comparisons take
into account plotted curves, random initial variables, and model parameters.

AR database, which exhibit a desirable non-increasing conver-
gence property. To gain deeper insights into the nonconvex
nature of our methods, Fig. 4 (b) presents the distribution
of classification accuracy across 500 runs on the FERET
database, considering random initial variables. Analyzing the
spread of accuracy values allows us to assess the robustness
and stability in different initialization scenarios. Furthermore,
in Fig. 4 (c), we visualize the timing costs associated with
various parameter settings, focusing on the ExYaleB database.
This analysis helps us evaluate the computational efficiency
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TABLE III
CLASSIFICATION ACCURACY (%) AND COMPUTATION TIMES OF
THE METHODS USED ON THE OBJECT AND DIGITAL DATABASES

with examining the timing costs under different parameter
configurations, we can make informed decisions to strike a
balance between accuracy and computational efficiency.

B. Experiments on Object and Digital Databases

The results listed in TABLE III provide quantitative com-
parisons for object and digital databases. The compared
methods, including CRC, DLSR, ULR, and GISA, have
higher computational efficiency. Here, ALPR, NMR, NLRℓ21,
and FNMR exhibit lower computational efficiency. Overall,
our methods consistently achieve lower timing costs while
improving accuracy compared to NMR and FNMR. However,
there are instances where our methods do not surpass all
the comparison methods, and this can be attributed to the
utilization of additional information, such as ALPR, ULR,
NLRℓ21, DLRSR, and RSLDA. This phenomenon could be
attributed to the absence of occlusions or illuminations in the
testing images, which are the factors in which our methods
excel to a certain extent.

To gain further insights, we conducted additional inves-
tigations to explore different perspectives. In Fig. 5 (a),
we illustrate the distributions of representation coefficients
obtained by our proposed methods for three different values
of p on the COIL20 dataset. This analysis allows us to
understand the impact of varying p on the coefficient matrix.
Furthermore, in Fig. 5 (b), we analyze the reconstructed errors
on the FLAVIA database to validate the effectiveness of our
methods. The reconstructed errors for the same subjects as
the testing samples exhibit lower values, while errors for
different subjects show higher values. This demonstrates the
ability of our methods to capture subject-specific information.
Moreover, Fig. 5 (c) showcases the block-diagonal structures

Fig. 5. Visual comparisons derived from the coefficient matrices generated
by our methods using three different p-values on object and digital databases.

Fig. 6. Visual comparisons of the reconstruction and residual images for three
p-values, focusing on (a) the AR database and (b) the ExtYaleB database.

with normalization on the MNIST database, providing insights
into the influence of the coefficient matrix.

C. Further Analysis and Discussion

This subsection first performed an ablation analysis on six
databases to assess the effectiveness and efficiency of the
modules used in our objective function. Additionally, we inves-
tigated the capabilities of our methods in face reconstruction
and noise removal tasks, while also exploring the impact of
parameter sensitivity on classification accuracy. These findings
were thoroughly analyzed and discussed below.
• Reconstruction Validation: To demonstrate the effective-

ness of our SpNFLMR methods, we provide visual
examples in Fig. 6 (a) and (b). These examples showcase
a series of reconstructed images and their correspond-
ing error images from the AR and ExYaleB databases.
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TABLE IV
COMPARISONS OF ACCURACY (%) AND COMPUTATION TIMES OF THE METHODS UNDER VARIOUS ABLATION SETTINGS ACROSS SIX DATABASES

Fig. 7. Visual comparisons of proposed methods across six databases to analyze the effects of different parameter pairs (p, d0, λ) on classification accuracy.

By visually inspecting these samples, it becomes evident
that our methods successfully remove occlusions and
illuminations from the testing images, attesting to their
capability in preserving image fidelity.

• Ablation Analysis: The results of the ablation studies are
presented in TABLE IV. The baseline method, denoted
as (a) and represented by equation (12), serves as the
reference. In the first set of experiments, we fixed the
coefficient regularization term and replaced the residual
term with equations (13) and (14), denoted as (b1)
and (b2), respectively. In the second set, we fixed the
residual term and substituted the regularization term
with equations (13) and (14), denoted as (c1) and (c2),
respectively. The results indicate that each module has a
minor influence on both the classification accuracy and
timing cost. Notably, when compared to the baseline (a),
both (c1) and (c2) exhibit more significant improvements
in timing costs compared to (b1) and (b2).

• Parameter Sensitivity: We conducted a thorough parame-
ter analysis, and the results are presented in Fig. 7 (a)-(f).
This analysis aimed to investigate the effects of differ-
ent values of (p, λ, d0) across six databases. For the
p parameter, we specifically selected three values and
adjusted the regularization parameter λ accordingly for

each set. The choice of the rank number of the coefficient
matrix, denoted as d = d0 × re, can vary depending
on the number of subjects and provides flexibility in
the selection process. Automatic estimation of the rank
number, denoted as re in previous studies [41], [49],
becomes crucial in scenarios where the exact rank of the
coefficient matrix is unknown. Furthermore, by analyzing
the classification accuracy of our SpNFLMR methods,
we observed that accuracy varied across different exper-
imental settings while remaining stable overall. This
comprehensive analysis of the (p, λ, d0) values provides
valuable insights into the validation and exploration of
the potential advantages. Carefully selecting appropriate
values for p, λ, and d0 further enhances the performance
of our SpNFLMR methods across various databases.

VI. CONCLUSION AND FUTURE WORK

This study focuses on investigating a structured nonconvex
and nonsmooth low-rank matrix regression model, which
utilizes the extended matrix variate power exponential distri-
bution. The main objective is to address structured noise, such
as occlusions and continuous illustration, by incorporating
the residual function and capturing the block-structures of
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the coefficient matrix. To achieve this, we introduce the
Schatten p-norm and its factorization for three different p-
values. This allows us to formulate structured regression
problems and develop efficient iteration procedures using the
augmented Lagrange function within the multi-variate ADMM
framework. Theoretical analysis is performed to establish
convergence properties under mild assumptions and the com-
putational complexity is also provided. Additionally, extensive
experiments are conducted to demonstrate the superior perfor-
mance and lower timing cost of our methods compared to
several related linear regression approaches.

In our upcoming research endeavors, we have identified two
primary avenues for future exploration. Firstly, we plan to
extend our efficient optimization algorithms to tackle tensor
recovery problems, as examined in [51] and [52]. Secondly,
our focus will be on incorporating additional information
into our models, including the integration of graph structures
[21], [40], [46], discriminative features [18], [53], [54], and
latent attributes [55]. These enhancements will be built upon
the groundwork laid by prior studies. We anticipate that
these efforts will lead to improved performance and greater
robustness across a variety of applications.
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