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Abstract— Cross-resolution face recognition (CRFR), which
is important in intelligent surveillance and biometric forensics,
refers to the problem of matching a low-resolution (LR) probe
face image against high-resolution (HR) gallery face images.
Existing shallow learning-based and deep learning-based methods
focus on mapping the HR-LR face pairs into a joint feature
space where the resolution discrepancy is mitigated. However,
little works consider how to extract and utilize the intermediate
discriminative features from the noisy LR query faces to further
mitigate the resolution discrepancy due to the resolution limi-
tations. In this study, we desire to fully exploit the multi-level
deep convolutional neural network (CNN) feature set for robust
CRFR. In particular, our contributions are threefold. (i) To learn
more robust and discriminative features, we desire to adaptively
fuse the contextual features from different layers. (ii) To fully
exploit these contextual features, we design a feature set-based
representation learning (FSRL) scheme to collaboratively rep-
resent the hierarchical features for more accurate recognition.
Moreover, FSRL utilizes the primitive form of feature maps to
keep the latent structural information, especially in noisy cases.
(iii) To further promote the recognition performance, we desire
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to fuse the hierarchical recognition outputs from different stages.
Meanwhile, the discriminability from different scales can also be
fully integrated. By exploiting these advantages, the efficiency of
the proposed method can be delivered. Experimental results on
several face datasets have verified the superiority of the presented
algorithm to the other competitive CRFR approaches.

Index Terms— Face recognition, representation learning, fea-
ture set, hierarchical fusion.

I. INTRODUCTION

DURING the past few decades, the noise robust face
recognition (FR) problem has been a vibrant topic due

to the increasing demands in law enforcement and biometric
applications [1]–[5]. Promising performance has been achieved
under controlled conditions where the acquired face region
contains sufficient discriminative information [6]–[12]. Never-
theless, in real surveillance scenes, the desired unambiguous
high-resolution (HR) face images may not be always available
because of the large distances between cameras and subjects.
This results in captured faces that are usually of low-resolution
(LR) with too much noise in poses and illumination conditions.
Fig. 1(a) demonstrates some real examples of low-resolution
faces. The primary challenge is how to match an observed
noisy LR probe against those HR candidates from a face image
gallery. In this case, the conventional feature extraction and
metric learning methods cannot be directly used due to the
existence of semantic resolution discrepancy in LR and HR
image space.

Recently, we have witnessed some advanced methods
investigating the use of deep neural networks for the
cross-resolution face recognition (CRFR) problem [13]–[19].
Most of these deep architectures explore pre-trained models
or train deep architectures in a feed-forward way to extract
features (see traditional deep learning method in Fig. 1(b)).
Usually convolutional layers are applied successively with
various kernel sizes to capture the local salient features, and
pooling layers are adopted to reduce the size of the extracted
feature maps with the larger sizes of receptive fields. The final
output of the fully connected layers is a high dimensional
vector, which is used to represent the features of LR and HR
face samples for the recognition task.

Due to the characteristics of LR images, the performance of
the CRFR problem is affected by two factors – how to learn
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Fig. 1. Significant novelties lie in (i) intermediate FSRL is exploited to
mitigate the resolution discrepancy, and (ii) hierarchical predictions from
different stages are fused to boost the recognition performance.

more efficient feature representations and how to exploit them
for the face recognition task. Carefully designed networks can
extract representative and discriminative features for the recog-
nition task. However, in previous methods, the discriminabil-
ity of the learned representation is not fully studied across
multiple latent feature extraction stages, which can provide
complementary information for the final recognition. There-
fore, in this article, we present to fully explore multi-level
deep convolutional neural network (CNN) features through
a set representation for the CRFR (Fig. 1). First, we learn
multi-scale features in different stages and utilize a simple yet
efficient approach to adaptively fuse them. Then, for the resul-
tant hierarchical features, we develop a novel feature set-based
representation learning (termed as FSRL) to fully explore these
features for more accurate recognition. In addition, based on
the observations that features from different stages contain
distinct information, we propose to fuse these hierarchical
recognition outputs on various scales to further improve their
performance. Experiments demonstrate the effectiveness of the
presented algorithm in various application scenarios.

We organize the rest of this article as follows. In Section II,
we introduce two categories of the relevant works, and the
proposed method is presented in Section III. The experimental
results and analysis are given in Section IV. Finally, we con-
clude this article in Section V.

II. RELATED WORK

We briefly introduce the previous relevant works on CRFR
in this section. To recognize an LR probe face with limited
details, researchers have concentrated on two main approaches,
super-resolution methods that recognize faces in the syn-
thesized HR domain space and resolution-robust mapping
methods where face samples with different resolutions are
matched in a unified feature space.

A. Super-Resolution Reconstruction Algorithms

Super-resolution (SR) algorithms have been investigated
during last decades [20], [21]. They first super-resolved the
desired HR face samples from the acquired LR one, and then
perform similarity metric learning in the same resolution space
by means of classical HR image recognition technologies. The
authors of [22], [23] presented to obtain the super-resolved
face images and remove the noise simultaneously. With the
help of carefully designed representation learning strategy,
an efficient face image super-resolution method was presented
in [24]. To fully utilize the model based prior, a deep
CNN denoiser together with multi-layer neighbor embed-
ding method was proposed in [25]. A component generation
and enhancement method was proposed in [26]. They firstly
obtained the basic facial structure by several parallel CNNs
and then predicted the fine grained facial structures by a com-
ponent enhancement algorithm. To recover identity informa-
tion when generating HR images, the authors of [27] designed
a super-identity CNN model. A siamese generative adversarial
network (GAN) was proposed in [28] for identity-preserving
face image SR. Similarly, the authors of [29] recently designed
a cascaded super-resolution framework together with iden-
tity priors to achieve superior performance. In [30], several
adaptive kernel mappings were trained to predict the useful
high-frequency feature from the given LR input.

B. Discriminative Feature Learning Methods

Resolution-robust algorithms just adopt a couple mappings
to meanwhile embed the LR input and related HR pairs
into a unified feature space for similarity metric learning.
The main challenge of these coupled mapping methods is
to design a reasonable discriminant criterion based on some
manifold assumptions. A couple of discriminant subspace
works have been proposed on the basis of the linear discrimi-
nant analysis [31]–[34]. Multidimensional scaling (MDS) [35],
[36] method firstly applies facial landmark localization to
the LR inputs and then embeds the LR and HR pairs into
a unified metric space where their distances approximate
the ones in the HR space. To ensure discriminability, two
discriminative multidimensional scaling (MDS) methods were
presented in [37] to take full advantage of both intra-class
and inter-class distance to project the coupled LR and HR
faces into a unified space where their large distance gap is
mitigated. In [38], [39], multi-resolution face samples were
involved simultaneously to extract resolution invariant features
for better recognition. Recently, many deep CNN based models
have been developed. For example, the robust partially coupled
networks were established in [40] to simultaneously achieve
feature enhancement and recognition. Motivated by the pioneer
work in [41], the authors of [42] applied deep coupled residual
network to embed the LR and HR face pairs into a unified
space. To investigate the scale-adaptive LR recognition prob-
lem, a cascaded SR GAN framework was proposed in [43].
Aghdam et al. [14] reported a deep CNN model for LR face
recognition, where various training resolutions are used for
feature extraction. In [44], the authors introduced a GAN
pre-training architecture to further enhance the accuracy of
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Fig. 2. Flowchart of our proposed feature extraction network (FEN), which can be divided into four stages each representing a feature set. The outputs
respectively calculated from four MSFBs are fused by a bottleneck layer. Accordingly, the output from this bottleneck layer is formulated to represent a more
discriminative visual feature of LR and HR face images.

several deep learning-based approaches, and a semi-supervised
local GAN [45] was also presented to impose the label consis-
tency prior that showed better performance by exploring unla-
beled data. The authors of [46] presented a two-stream CNN
method based on selective knowledge distillation to identify
LR faces with low computational cost. An adversarial training
of deep networks has also been proposed to extract the most
discriminative features from the generated hard triplets [47].
The contextual information can also be incorporated into
the discriminative features through hierarchically gated deep
networks [48]. Feature matching between similar images by
considering the discriminative spatial contexts has also been
studied in literature [49]. Shu et al. [50] proposed fine-grained
dictionaries to achieve better recognition accuracy, which is
also related to the proposed CRFR approach.

Distinguishing from the existing competitive CRFR
approaches, in our method, different intermediate features
are learned in different stages and fused by a bottleneck
layer to achieve a more discriminative feature with more
local salient context information. Moreover, a feature set-based
representation learning scheme is designed to collaboratively
represent these extracted hierarchical features for better recog-
nition. Meanwhile, the discriminability in different scales are
federated to further boost the recognition accuracy.

III. PROPOSED APPROACH

The challenging issue in CRFR is how to extract discrim-
inative and resolution-invariant features from the pair of LR
and HR face images. To this end, in this work, multi-level
deep CNN feature sets are output from different stages to
investigate discriminative capability of intermediate features.
Additionally, an interesting feature set-based representation
learning approach is developed to mitigate the resolution
discrepancy. The hierarchical recognition results calculated
from the CNN feature set of different stages are fused to boost
the recognition performance.

A. Feature Extraction Network

Network Architecture. Fig. 2 details the flowchart
of the proposed feature extraction network (FEN), which is
a Resnet-like CNN [41]. The network employs the CNN

to extract discriminative and meaningful features shared by
different resolutions. The LR faces are generated as follows:
we first downsample the original HR faces by a scale factor
s, and then upsample the LR faces to the original size by
interpolation.

The convolution layer has a kernel size of 3 × 3 with
stride and padding all setting to 1, while the max pooling is
performed with a kernel size of 3×3 and a stride of 2. We add
ReLU nonlinear activation after each convolution layer. The
number of channels for the feature map in each convolution
layer is 32, and a fully connection layer has 512 outputs as
the last layer.

Following [51], we use multi-scale feature extraction
block (MSFB) to extract the face image features at various
scales, as shown in Fig. 3. MSFB uses two different branches
with different kernel sizes. We formulate the operation in the
MSFB as follows:

M1 = σ
(
w1

3×3 ∗ Sn−1 + b1
)

,

N1 = σ
(
w1

5×5 ∗ Sn−1 + b1
)

,

M2 = σ
(
w2

3×3 ∗ [M1, N1]+ b2
)

,

N2 = σ
(
w2

5×5 ∗ [N1, M1]+ b2
)

,

M ′ = w3
1×1 ∗ [M2, N2]+ b3, (1)

where σ(x) = max(0, x) denotes the ReLU operation, and the
symbol [M1, N1], [N1, M1], [M2, N2] stand for the concate-
nation. It should be noted that the input and the output of the
first and second convolution layers in the MSFB possess the
same number of feature maps. We apply an 1× 1 convolution
layer to reduce the number of feature maps to 32 in the MSFB.

In the experiment, we find that the output of each MSFB
may contain distinct features. Therefore, we want to explore
these contextual features from various stages. A simple yet
effective feature fusion strategy is used – all the output features
from the foregoing MSFB are sent to the end of the network.
To adaptively fuse these contextual features, a bottleneck layer
composed of a convolution layer with a kernel size of 1 × 1
is utilized.

The fusion strategy is defined as:
F = w ∗ [S1(8), S2(4), S3(2), S4]+ b, (2)
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Fig. 3. Multi-scale feature extraction block (MSFB).

where Si (i = 1, 2, 3, 4) denotes the output of the i th MSFB,
and the numbers (8,4, and 2) in the parentheses denote the
stride of the max pooling operation.

Training Loss: Let xi and yi denote the extracted feature
vectors by the proposed FEN from the i th HR face and its
LR counterpart, respectively. During the training of FEN,
we first devote to maximizing inter-class distance to learn
discriminative identity features in the respective HR and LR
feature spaces. To this end, the following softmax loss is used:

Ls = −
m∑

i=1

log
eUT

ci
xi+aci∑n

j=1 eUT
j xi+a j

−
m∑

i=1

log
eV T

ci
yi+bci∑n

j=1 eV T
j yi+b j

,

(3)

where m denotes the number of the training sample pairs, n
denotes the number of the object classes in the training set,
ci represents the label of the i th sample image, and U j and
V j are the j th column of the weight matrices U and V in the
final fully connection layer, while a and b are the biases for
the respective HR and LR feature spaces.

Meanwhile, we aim to reduce the intra-class difference
between an individual face sample and its center of the same
identity in the feature space. The center loss [6] is written as

Lc =
m∑

i=1

∥∥xi − zx
ci

∥∥2
2
+

m∑
i=1

∥∥yi − zy
ci

∥∥2
2 , (4)

where zx
ci

and zy
ci are the centers of the HR and the LR features

corresponding to the ci th class, respectively.
As shown in Figure 2, the critical challenge of the CRFR

comes from the limited distinct features in the observed
LR face images. Fortunately, the HR training samples can
be utilized to guide the extraction of discriminative features
from the LR faces. For the CRFR task, the features of LR
face images should be as closed as possible to their HR
counterparts. For the sake of simplicity, we have the following
Euclidean loss

Le =
m∑

i=1

∥∥xi − yi

∥∥2
2 . (5)

By considering the previous three effective losses, the loss
of the proposed method can be written as

L F E N = Ls + θ1Lc + θ2Le. (6)

where θ1 and θ2 are two balancing hyper-parameters to control
the contributions of the center loss and the Euclidean loss.
In this fashion, the proposed method takes into account both

the discriminative and representative ability of the learned
features, making the CRFR more expressive in the learned
feature space.

B. Feature Set-Based Representation Learning

In previous methods, the tail features (e.g., xi and yi in the
aforementioned section) extracted by the trained network are
usually used to train the classifiers directly for the recognition
task. However, the extracted features from the MSFBs are not
fully explored to their full potentials. We will elaborate in
this section on how we can utilize these multi-level features
to mitigate the resolution discrepancy for better recognition
performance.

1) Vector Set-Based Collaborative Representation: In this
part, we use a vector set to represent a face image. The features
extracted by FEN from a LR query face image in a specific
stage is denoted as Y = {

y1, . . . , yi , . . . , yna

} ∈ Rd×na

(where each column of Y is a reshaped feature map, na denotes
the number of feature maps in a query stage, and d is the size
of the reshaped feature map).

Denote by Xk the features extracted from the kth (k =
1, 2, . . . , K ) HR gallery face image in the same stage. Let
X = [X1, . . . , Xk, . . . , X K ] ∈ Rd×nb be the concatenation of
the features from all the HR gallery faces, and nb denotes the
total number of the resultant feature maps.

For the query feature set Y , its l p-norm regularized hull can
be defined as

H (Y) =
{ na∑

i=1

αi yi | ‖α‖l p < δ, s.t.
∑

αi = 1

}
(7)

where α is the coefficient vector. Then, we can define the
representation of the hull Yα over the gallery feature set X
as follows:

min
α,β
‖Yα − Xβ‖22 + λ1‖α‖l p + λ2‖β‖l p

s.t.
∑

αi = 1, (8)

where β is the representation vector, the constraint
∑

αi = 1
is used to prevent the trivial solution α = β = 0, and λ1 and
λ2 are hyper-parameters to balance between the regularization
terms on α and β, respectively.

Either l1-norm or l2-norm could be explored to constrain
the vector norm for α and β . For the sake of efficiency and
effectiveness, we use l2-norm here. In this case, Eq. (8) will
have a closed-form solution. The Lagrangian function (8) can
be denoted as

L (z,ϕ)

= ‖Yα − Xβ‖22 + λ1‖α‖22 + λ2‖β‖22 + ϕ(eα − 1)

= ‖Az‖22 + zT Bz + ϕ
(

dT z − 1
)

, (9)

where e is an all-one row vector, d = [e 0]T , and

z =
[

α

β

]
, A = [

Y −X
]
, B =

[
λ1 I 0
0 λ2 I

]
. (10)
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By taking the derivative of the Langarian function wrt the
multiplier ϕ and the decision variable z, and equating the
results to zero, we obtain

∂L

∂ϕ
= dT z − 1 = 0

∂L

∂ z
= AT Az + Bz + ϕd = 0. (11)

Then, we can obtain the closed solution to Eq. (9):

ẑ =
[

α̂

β̂

]
= z0/dT z0, (12)

where z0 =
(

AT A+ B
)−1

d.
2) Matrix Set-Based Collaborative Representation: Con-

trary to the previous section where each feature map is treated
as a vector, here we adopt the original matrix form of the fea-
ture map to represent a face image. Existing works [52] have
revealed that nuclear norm constraint could be more suitable to
keep the 2D structure of a feature map. The features extracted
from a LR query face image and all the HR gallery faces in a
certain stage are denoted by Y = {

Y 1, . . . , Y i , . . . , Y na

} ∈
Rp×q×na and X = [

X1, . . . , Xk, . . . , Xnb

] ∈ Rp×q×nb ,
respectively.

Then, we can define the representation of the hall Y over
the corresponding gallery feature set X by

min
α,β
‖Y (α)− X(β)‖∗ + λ1‖α‖22 + λ2‖β‖22

s.t.
∑

αi = 1, (13)

where ‖ · ‖∗ denotes the nuclear norm of a matrix, Y(α) =
α1Y 1+, . . . ,+αna Y na , and X(β) = β1 X1+, . . . ,+βnb Xnb .

For convenience, Eq. (13) can be rewritten as

min
α,β
‖E‖∗ + λ1‖α‖22 + λ2‖β‖22

s.t. Y (α)− X(β) = E,
∑

αi = 1. (14)

The alternating minimization method (ADMM) is then
adopted to solve this optimization problem with the following
augmented Lagrangian function:

L = ‖E‖∗ + λ1‖α‖22 + λ2‖β‖22 + 〈Z, Y (α)− X(β)− E〉
+〈γ , eα−1〉+μ

2

(
‖Y(α)−X(β)−E‖22+‖eα−1‖22

)
,

(15)

where 〈·, ·〉 is the inner product, and Z and γ are the auxiliary
Lagrange multipliers, with a positive penalty constant μ > 0.

Then the optimal α and β can be solved alternatively.
Specifically, by fixing others, the solution to α is

α(l+1) = arg min
α

L(α,β(l), E(l), Z(l), γ (l))

= arg min
α

f (α)+
∥∥∥eα − 1+ γ (l)/μ

∥∥∥2

2

= arg min
α
‖Ỹα − x̃‖22 + η‖α‖22, (16)

where f (α) =
∥∥∥Y (α)− X(β(l))− E(l) + Z(l)/μ

∥∥∥2

2
+

η‖α‖22, x̃ =
[
Vec

(
X(β(l))+ E(l) − Z(l)/μ

)
; (1− γ (l)/μ

)]
,

Ỹ = [H; e], H = [
Vec (Y 1) , . . . , Vec

(
Y na

)]
, and η =

2λ1/μ. Thus, Eq. (16) has a closed form solution as

α(l+1) = (Ỹ
T

Ỹ + η · I)−1Ỹ
T

x̃. (17)

Once α(l+1) is obtained, β(l+1) is updated via optimizing
the following minimization problem:

β(l+1) = arg min
β

L(α(l+1),β, E(l), Z(l), γ (l))

= arg min
β
‖X̃β − ỹ‖22 + ρ‖β‖22, (18)

where ỹ = Vec
(
Y (α(l+1))− E(l) + Z(l)/μ

)
, X̃ =[

Vec (X1) , . . . , Vec
(
Xnb

)]
, and ρ = 2λ2/μ. The closed form

solution of Eq. (18) is given as

β(l+1) = (X̃
T

X̃ + ρ · I)−1 X̃
T

ỹ. (19)

By fixing other parameters, E(l+1) can be solved by

E(l+1) = arg min
E

L(α(l+1),β(l+1), E, Z(l), γ (l))

= arg min
E

1

μ
‖E‖∗ + 1

2
‖E − F‖22 , (20)

where F = Y(α(l+1)) − X(β(l+1))+ Z(l)/μ. The solution of
problem (20) could be solved by

E(l+1) = U T 1
μ
[S]V , (21)

in which
(
U, S, V T

) = svd(F), T 1
μ
[S] =

diag

({
max

(
0, s j, j − 1

μ

)}
1≤ j≤r

)
, and r denotes the

rank of matrix S.
Once α(l+1), β(l+1) and E(l+1) are obtained, the auxiliary

Lagrange multipliers Z and γ can be updated to

γ (l+1) = γ (l) + μ
(

eα(l+1) − 1
)

,

Z(l+1) = Z(l)+μ
(

Y (α(l+1))− X(β(l+1))−E(l+1)
)

. (22)

The procedure for solving Eq. (14) is summarized in
Algorithm 1.

Algorithm 1 Solving Eq. (14) via ADMM

Input: The extracted feature set Y ∈ Rp×q×na from a LR
query face, concatenated feature set X ∈ Rp×q×nb from all
the HR gallery faces.
Parameter: The model parameters λ1 and λ2, and the
termination condition parameter ε.
Initialize: α0 = β0 = 0, γ 0 = 0, E0 = Z0 = 0.

while
∥∥Y (αl+1)− X(βl+1)− El+1

∥∥2
F > ε do

1: Update α via Eq. (17);
2: Update β via Eq. (19);
3: Update E via Eq. (21);
4: Update Lagrange multipliers Z and γ via Eq. (14);
5: l ← l + 1.

end while
Output: The optimal representation vectors α̂ and β̂.
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Fig. 4. The proposed HFSRL scheme for CRFR process. The FEN is used to extract discriminative feature sets. First, multi-scale features are extracted
in each stage. Then, based on these hierarchical features, FSRL scheme is designed to fully exploit these deep CNN features for more accurate recognition.
Last, these hierarchical recognition outputs are fused to further promote the recognition performance.

C. Hierarchical Prediction Fusion

It is well known that the features obtained from different
layers contain distinct information. The features learned from
the shallow layers contain the low level information such
as edges and corners, while the features with rich semantics
can be extracted from the deeper layers. Fully exploring the
discriminative abilities of such hierarchical features is essential
to the recognition tasks [53].

Suppose that we have obtained the representation vectors
α̂ and β̂ via solving the aforementioned feature set-based
representation learning problem. We can rewrite β̂ as β̂ =[
β̂1; . . . ; β̂c; . . . ; β̂C

]
, where each β̂c denotes the sub-vector

of the coefficients corresponding to the cth class. Then the
regularized representation residual of hall Y (α̂) over each class
Xc can be denoted by

rc =
∥∥∥Y(α̂)− Xc(β̂c)

∥∥∥2

2
/
∥∥∥β̂c

∥∥∥2

2
. (23)

Then the class label of the query feature set Y is
Identity(Y) = arg minc {rc}.

Now the problem boils down to how to fuse the hierarchical
outputs from different stages (scales) to achieve a better per-
formance. With the help of a given dataset T = {(xi , zi )} (i =
1, 2, . . . , n) and s scales (in our model, the output of the i th
stage is treated as the i th scale due to the use of a pooling
operation), a decision matrix can be defined as follows:

di j =
{
+1, if hi j = zi

−1, if hi j 
= zi ,
(24)

where zi is the real label for sample xi while hi j ( j =
1, 2, . . . , s) represents the predicted label of xi on the j th
scale.

In order to obtain the best recognition result from different
stages of scales, we define the following objective function:

min
σ
‖e1 − Dσ‖22 + τ‖σ‖1

s.t.
∑

σi = 1, σi > 0, (25)

where σ is the scale weight, τ is the regularization parameter,
and e1 = [1, . . . , 1]T has a length of s. Eq. (25) can be
rewritten as

min
σ
‖ê− D̂σ‖22 + τ‖σ‖1

s.t. σi > 0, i = 1, 2, · · · , s, (26)

where ê = [e1; 1], D̂ = [D; e1]. The solution of prob-
lem (26) can be easily obtained by the widely used l1_ls
solver [54]. Once the optimal scale weights are obtained,
the fused prediction can be formulated as Identity (xi ) =
arg maxk

{∑
j σ j |hi j = k

}
. The overall evaluation process is

given in Fig. 4.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this part, we implement tests to validate the efficiency
of our model. Following previous work, we use the CASIA-
Webface [55] to train our FEN. The detected faces are nor-
malized and resized to have a size of 112× 96. In the next,
we firstly depict the datasets and the experimental settings,
and then perform comparisons between our proposed approach
and several competitive CRFR approaches. We implement our
model with PyTorch on the popular NVIDIA Titan Xp GPU.

A. Datasets and Settings

Experiments are performed on three well-known face
datasets: UCCS (UnConstrained College Students) [56],
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Fig. 5. Example face samples from the (a) UCCS dataset, (b) NJU-ID dataset,
and (c) SCface dataset. Each column lists three images with the same identity
from two respective resolutions, where image samples in the first row have
HR while in the second (third) row have LR without (with) block occlusion.

NJU-ID (Nanjing University ID Card Face) [57] and SCface
(Surveillance Cameras Face) [58]. Some HR-LR images pairs
from these datasets are listed in Fig. 5. We detail the three
datasets in the next text.

1) UCCS Dataset: The UCCS dataset collects face images
of college students. The distance between the HR surveillance
camera and the objects is about 100 to 150 meters. The
images captured in large standoff distance and unconstrained
surveillance settings make the recognition problem more diffi-
cult. Face images from 1,732 labeled persons are used, where
blur, occlusion and bad illumination are existed. Following the
experimental protocol in [40], we choose the top 180 subjects
on the basis of the number of images. In this experiment,
we separate the images of each subject according to a ratio
of 1:4 to form the probe and gallery sets. The gallery face
samples are reshaped to have a size of 112 × 96 as the HR
sets, while the probe face samples are first down-sampled to
14 × 12 pixels and then resized to 112 × 96 pixels to form
the LR sets. The same size face samples in CASIA-WebFace
dataset are applied for training the FEN.

2) NJU-ID Dataset: The NJU-ID dataset includes face
samples from 256 persons. A non-contact IC chip is embedded
in the card. The ID card used here refers to the second
generation of resident ID cards in China. Due to the storage
limitations of the ID card, the stored images natively have low
resolution. For each person, there are one HR camera image
captured from a digital camera and one LR card image. The
ID card image has a size of 102×126, while the camera image
has a size of 640× 480. All the card and camera images are
resized to have a size of 112×96. To make the problem more
challenging, we further down-sample the ID card images to
28× 24 to form the LR query images.

3) SCface Dataset: The SCface dataset uses five video sur-
veillance cameras with various qualities to collect uncontrolled
indoor face images from 130 subjects. This dataset can be
regarded as a real-world LR dataset. For each person, there
is one frontal mugshot face sample captured by a digital
camera and 15 images (five images at each distance) taken by
five real surveillance cameras with different qualities within
three distances (1.0m, 2.6m and 4.2m, respectively). In this
experiment, 50 out of 130 persons are randomly picked to
fine-tune the FEN while the rest for test. The CASIA-WebFace
images with size of 112×96 are take as the HR images while

Fig. 6. Ablation study on effects of the feature fusion (top) and the
hierarchical prediction fusion (bottom).

those of 7× 6, 10× 8 and 16× 14 are taken as LR images to
train the FEN at three distances.

B. Ablation Study

Fig. 6 presents the ablation study on the feature fusion
and hierarchical prediction fusion. In this part, for the
sake of convenience, we use HFSRL to represent hierar-
chical vector set-based collaborative learning. Compared to
HFSRL, HFSRL_NF removes the feature connections from
other stages. FSRLi (i = 1, 2, 3, 4) indicates using the
feature sets from the i th stage for representation learn-
ing. From Fig. 6, we can see that, FSRL obtains bet-
ter recognition accuracy than FSRL_NF, which reveals
the feature fusion strategy is useful for recognition. The
reason may be that the features from other stages can
carry some discriminative information from early layers to
latter layers.

From Fig. 6, we can also find that the performance
from different stages varies a lot. Generally, the features
extracted from the lower layer have the worst performance
since the semantic information revealed by the lower layer
is limited. The features extracted from the higher layer
achieve better performance than that in lower layer. The
reason may be that the features in higher layer contain
more semantic information, that is essential for recognition
tasks. Moreover, our fusion method obtains the best perfor-
mance, which reveals that fusing the results from latent layers
can bring complementary discriminative ability for the final
recognition.
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TABLE I

FACE RECOGNITION INDEXES (%) OF RESPECTIVE METHODS ON THE
UCCS DATASET. THE BOLDFACE INDICATES OUR METHOD

TABLE II

FACE RECOGNITION INDEXES (%) OF RESPECTIVE METHODS ON THE

NJU-ID DATASET. THE BOLDFACE INDICATES OUR METHOD

TABLE III

FACE RECOGNITION INDEXES (%) OF RESPECTIVE METHODS ON THE

SCFACE DATASET. THE BOLDFACE INDICATES OUR METHOD

C. Competitive Results

We also compare our presented algorithm with two
categories of advanced approaches to handle the resolu-
tion mismatching issue: one is super-resolution methods,
such as SICNN [27] and SiGAN [28], together with one
deep-based recognition method, i.e., DFL [6]. The other is
resolution-robust methods, such as PCN [40], DCR [42],
DAlign [34], SKD [46] and Centerloss [44]. For those
super-resolution approaches, we adopt the CASIA-Webface
dataset for training. While for resolution-robust approaches,
we employ the same probe and gallery sets. We use HFSRL-v
and HFSRL-m to denote the hierarchical feature set-based rep-
resentation learning with vector and matrix form, respectively.

Tables I-III show the recognition results. We see that directly
feeding the super-resolved faces into the classical recognition
method appears to have a small contribution to final recogni-
tion since that the synthesized faces may be not optimized

Fig. 7. Face recognition accuracy (%) of respective method on the UCCS
dataset with random occlusion.

Fig. 8. Face recognition accuracy (%) of respective method on the NJU-ID
dataset with random occlusion.

for recognition tasks. By comparison, the resolution-robust
approaches (i.e., PCN, DCR, DAlign, SKD, and Centerloss)
take the discriminability of features into account, achieving
better recognition performance. The quantitative comparisons
on three datasets also validate that our HFSRL approach gets
the best performance among all competitive ones. By fully
exploiting the multi-level deep CNN features, our proposed
HFSRL can dramatically boost the recognition accuracy.

On account of the complicated and unknown imaging
scenes, the effect of noise cannot be neglected in real-world
applications. In this part, the observed LR query face samples
are corrupted by a square “baboon” image with a random
location under an occlusion standard of 20%. Some examples
are displayed in Fig. 5. The recognition results of compet-
itive approaches are given in Fig. 7-9. We can survey that
the performance of all methods are reduced drastically. Our
method (both HFSRL-v and HFSRL-m) can also perform
better than other competitors. Particularly, by considering the
latent structural information of the feature set, our proposed
HFSRL-m can better reveal noise and performs better than
HFSRL-v.

D. Speed Comparisons

In this part, we check the computational speed of com-
petitive methods. We conduct tests with a configuration of
Intel CPU @ 3.4 GHz. For the simplicity of demonstration,
we only provide the comparisons on the NJU-ID dataset.
The average inference time of respective methods are tabulated
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Fig. 9. Face recognition accuracy (%) of respective method on the SCface dataset with random occlusion.

TABLE IV

SPEED COMPARISONS (SECONDS) OF RESPECTIVE METHODS

ON THE NJU-ID DATASET

in Table IV. The two super-resolution methods, SICNN and
SiGAN, cost little more time due to the extra operation
of resolution enhancement. By directly performing recogni-
tion, the resolution-robust approaches, PCN, DCR, DAlign,
SKD, and Centerloss, need relatively lower computational
cost. Different from previous methods, which directly use
the tail extracted feature vector for recognition, our proposed
methods fully take the multi-level hierarchical features into
account, thus cost much more computational time. Especially,
HFSRL-v has closed solution and only involves a matrix inver-
sion operation. Thus, it has comparative time consumption
with other methods. HFSRL-m obtains the best performance
at the cost of higher time consumption due to the iterative
procedure in representation learning. In our future work,
we will try our best to investigate fast and efficient ADMM
to accelerate the procedure of representation learning.

V. CONCLUSION

In this work, we present to exploit multi-level deep CNN
feature set to further mitigate the resolution discrepancy for
better CRFR. An end-to-end feature extraction network is
suggested to learn a more discriminative feature representa-
tion, which can contain more details of visual and contex-
tual information. A feature set-based representation learning
scheme is proposed to jointly represent hierarchical features.

By fusing recognition results respectively generated by hierar-
chical features, CRFR accuracy can be improved. In addition,
experimental results over three different popular face datasets
with various recognition scenes have verified that the presented
approach can outperform some competitive CRFR approaches.

In the future work, we will incorporate face priors such as
face landmark and face parsing into the attention network to
enhance the discriminability of the features. Also, we will try
to adopt the graph neural networks to handle the multi-level
hierarchical features for better recognition. Moreover, we will
investigate the adversarial metric learning methods to robustly
match the cross-resolution face image pairs.
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