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For robust face recognition tasks, we particularly focus on the ubiquitous scenarios where both training and
testing images are corrupted due to occlusions. Previous low-rank based methods stacked each error image into
a vector and then used L, or L, norm to measure the error matrix. However, in the stacking step, the structure
information of the error image can be lost. Depart from the previous methods, in this paper, we propose a novel
method by exploiting the low-rankness of both the data representation and each occlusion-induced error image
simultaneously, by which the global structure of data together with the error images can be well captured. In
order to learn more discriminative low-rank representations, we formulate our objective such that the learned
representations are optimal for classification with the available supervised information and close to an ideal-
code regularization term. With strong structure information preserving and discrimination capabilities, the
learned robust and discriminative low-rank representation (RDLRR) works very well on face recognition
problems, especially with face images corrupted by continuous occlusions. Together with a simple linear
classifier, the proposed approach is shown to outperform several other state-of-the-art face recognition methods

on databases with a variety of face variations.

1. Introduction

Object classification is a fundamental problem in pattern recogni-
tion community [1-16]. Due to the advantages of non-intrusive natural
and high uniqueness, face recognition has been an interesting and
active topic in many ubiquitous biometrics applications [17-32], such
as surveillance, human machine interaction, access control, photo
album management in social media. In the past few decades, regression
based face recognition approaches have led to state-of-the-art perfor-
mance [33-44]. The representative ones are sparse representation-
based classification (SRC) [33] and linear regression-based classifica-
tion (LRC) [34]. SRC solves an L;-norm minimization problem for a
test input by deriving the sparse coefficients for the training data, and
then uses the coding coefficients associated with each class to calculate
the distance from the query sample to each class. Many following works
of SRC have been reported for vision problems, e.g., super-resolution

[45], facial expression recognition [46] and visual tracking [47], etc. On
the other side, Naseem et al. [34] proposed LRC for face recognition.
Based on an assumption that samples from a specific object class lie on
a linear subspace, LRC represents a test image as a linear combination
of training images of each class. Yang et al. [48] gave an insight into
SRC and sought reasonable supports for its effectiveness. They thought
that the L;-regularizer has two properties, sparseness and closeness.
Sparseness determines a small number of nonzero representation
coefficients and closeness makes the nonzero representation coeffi-
cients concentrating on the training samples having the same class
label as the test sample. Based on the discussion about the working
mechanism of SRC, Zhang et al. [36] demonstrated that the role of
collaboration between classes in representing a query image is more
important than that of the sparsity constraints. In their work, a
collaborative representation-based classification (CRC) model is pre-
sented with a squared L,-regularization which achieves competitive
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performance in terms of accuracy but with significantly lower complex-
ity than that of the sparse representation method.

It is worth noting that most previous works assume that both
training and testing images are taken under a well-controlled setting
(i.e., under reasonable illumination, pose, variations without occlusion
or disguise). Their performance will be degraded when the images are
contaminated. To further assess the robustness of the proposed
algorithm, test images are considered to be corrupted due to occlusion
or disguise in literatures. By introducing an identity matrix I as a
dictionary to code the outliers (e.g., corrupted or occluded pixels), SRC
[33] exhibits excellent robustness and produces promising perfor-
mance. However, SRC is not robust to contiguous occlusion such as
sunglasses and scarf, since the occlusion level has gone beyond the
breakdown point determined by the algorithm. By modeling the sparse
coding as a sparsity-constrained robust regression problem, Yang et al.
[49] modified the SRC framework for handling outliers such as
occlusions in face recognition. He et al. [50] unified the algorithms
for error correction and detection by using the additive and the
multiplicative forms respectively, and established a half-quadratic
framework to solve the problem of robust sparse representation.
Yang et al. [51-54] used nuclear norm to describe the structural
characteristics of error image and proposed nuclear norm based matrix
regression and matrix decomposition model, which is robust for face
recognition with occlusion and illumination changes and for occluded
image recovery. Unfortunately, the performance of the above methods
will be degraded if both training and testing images are corrupted,
since none of them take the possible corruption in training images
into account.

Low-rank matrix recovery, which determines a low-rank matrix
from corrupted input data, has been successfully applied to applica-
tions including salient object detection [55], background subtraction
[56], visual tracking [57] and image denoising [58]. Recently, this
technique has been applied for multi-class classification. Chen et al.
[59,60] used robust principle component analysis (RPCA) [61,62] to
first remove noise from the training data class by class. Then traditional
PCA plus SRC were employed for feature extraction and recognition.
Motivated by low-rank matrix recovery, Ma et al. [63] presented a
discriminative low-rank dictionary learning algorithm to learn a low-
rank dictionary class by class for sparse representation-based face
recognition. Although the above matrix recovery based methods have
received promising results in case that both the training and testing
images are corrupted, they remove noise from training samples class by
class. This process is computationally expensive when the number of
classes is large. On the other hand, the class-by-class strategy ignores
the correlation between different classes.

As an extension of RPCA, low-rank representation (LRR) [64] was
originally presented to segment subspace from a union of multiple
subspaces. LRR can capture the global structure of data and perform
robust subspace segmentation from the corrupted data. Later, Liu et al.
[65] proposed a latent low-rank representation (LatLRR) algorithm to
integrate subspace segmentation and feature extraction into a unified
framework. LatLRR is able to robustly extract salient features from
corrupted data for classification. Similarly, Yin et al. [66] proposed a
double low-rank matrix recovery method by considering the recovery of
row space and column space information simultaneously. In literatures
[65,66], one of the low-rank matrices was used as projection function
to extract salient features for classification. By introducing an idea
regularization term into the objective of LRR, Zhang et al. [67]
proposed to learn a structured low-rank representation from contami-
nated training samples for classification. A discriminative low-rank
representation with respect to the constructed dictionary is obtained
and a simple yet powerful linear multi-classifier is performed on this
representation for classification tasks.

In previous low-rank based methods, each error image is stacked
into a vector and all the representation residuals form an error matrix,
which is characterized by the L; or L, norm. However, after this
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stacking step, the structure information of the image may be ignored.
Meanwhile, characterizing the representation error pixel by pixel
individually may neglect the whole structure of the error image. To
capture the low-rank structure information in the error image,
particularly with occlusion-induced errors, we introduce the low-rank
assumption to characterize the representation and error term simulta-
neously: the representations form a low-rank matrix, which can
capture the global structure of data and encode the pairwise affinities
between data vectors; each error image is also a low-rank matrix, which
can directly characterize the holistic structure of the occlusion-induced
error image individually. Label information from the training data is
then incorporated by adding an ideal-code regularization term to the
objective function of our model. In addition, the classification error
constraint is included to make the learned representation optimal for
final classification purpose. With the above low-rank assumption,
ideal-code regularization term and classification error constraint, we
are able to learn a robust and discriminative low-rank representation
(RDLRR) for face recognition with occlusions. RDLRR aims to reveal
the global structure of data in vector representation space and remove
the low-rank error in original image space simultaneously. After
obtaining the robust and discriminative representation, we also use a
simple yet powerful linear multi-classifier for classification tasks. Our
extensive experiments will verify the effectiveness and robustness of
the proposed method.

The reminder of the paper is organized as follows. Section 2 briefly
reviews related works on low-rank matrix recovery for classification. In
Section 3, we present our proposed algorithm based on low-rank
representation, including the optimization details. Additionally, we also
provide the complexity analysis and convergence analysis in this
section. Section 4 evaluates the performance of the proposed methods
on several commonly used face recognition databases. Section 5
concludes this paper.

2. Low-rank matrix recovery for classification

In this section, we first review two popular low-rank matrix
recovery models, including robust principal component analysis
(RPCA) and low-rank representation (LRR). Then, we introduce the
classification scheme based on robust representation.

2.1. Low-rank matrix recovery

Principal component analysis (PCA) [68] is a well-known dimen-
sion reduction technique for image reconstruction and classification
purpose. Despite its efficiency and effectiveness, PCA is known to be
sensitive to errors with large magnitudes. When the data is contami-
nated (occlusion or disguise), the reconstruction and classification
performance of PCA deteriorates rapidly. A number of approaches have
been proposed in literatures to address this problem, including the
introduction of Li-norm variance [69], and low-rank matrix recovery
[61,62].

Low-rank matrix recovery aims at decomposing data matrix X into
two matrixes A and E, where A is a low-rank matrix and E is the
corresponding sparse error matrix. To recovery the low-rank approx-
imation A from X, Low-rank matrix recovery needs to solve the
following minimization problem:
min ||Allx + A|Ell; s.z. X=A+E,
AE (€))
where A is a parameter that controls the sparsity of the noise matrix E,
[|A]|+ is the nuclear norm (i.e., the sum of the singular values) of A, ||
E||; is the Li-norm (i.e., the sum of the absolute values of each entry)
of E. As proved in [61], under some suitable assumptions, it is possible
to recover both the low-rank and the sparse components exactly by
solving a convenient convex program. Model (1) assumes that all data
vectors in X are coming from a single subspace. Chen et al. [59, 60]
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Fig. 1. Illustration of image decomposition with low-rank assumption. (a) Original images, (b) Recovered images, (c) Error images.

used this model to remove noise from training samples class by
class, this process can be computationally expensive for large number
of classes.

In many cases such as face recognition, the underlying dataset is a
union of multiple subjects. Samples of one subject may be drawn from
the same subspace, while samples of different subjects are from
different subspaces. LRR [64] seeks the lowest-rank representation
among all the candidates that represent all samples as the linear
combination of the bases in a dictionary. A more general rank
minimization problem is formulated as:

min [|Z|; + A|[E[| s.t. X=DZ+E,
Z,D.E

2
where D is a dictionary that linearly spans the data space and Z is the
lowest-rank representation of data X over dictionary D. By choosing
the dictionary D = I, Eq. (2) degenerates to Eq. (1). So LRR can be
regarded as a generalization of RPCA. LRR can capture the global
structure of data, giving a more effective tool for robust subspace
segmentation and other applications.

2.2. Classification

An easy yet powerful linear classifier is used for classification tasks
[67,70]. Denote by Z the low-rank representation of training data X
and by Zyest the low-rank representation of test data Xyese Over the
dictionary D respectively. The multivariate ridge regression is used to
train a linear classifier W:

W = argmin ||H — WZ|} + «||W|},

w 6))
where H is the class label matrix of data X and 7> 0 is a parameter.
Since Eq. (3) is a standard regression model, we can yield its close-form
solution by W = HZT(ZZ" + 7I)~". Then label for test sample repre-
sentation z; (the ith column in Zest) is given by:

Algorithm 1:. Low-rank matrix recovery for classification.

Input: Training data X, dictionary D, testing data Xgest, class
label matrix H and parameters A and 7
Step 1: Obtain the low-rank representation Z from X by opti-
mizing (2)
Step 2: Perform low-rank decomposition on XyeseWith dictionary
D

min

Ziest.Erest
Step 3: Given the low-rank representation Z of training data X,

1Ziestlls + AllEzes |l sote Xiegr = DZieg + Epegr,

learn the linear classifier W by Eq. (3)
Output: For each z;, identity (z;) «<arg max (s = Wz,
k

k=argmax (s= Wz,

k 4
where s is the class label vector of test sample representation z;.
Algorithm 1 summarizes the procedure of integrating low-rank matrix
recovery and linear classifier for recognition.

3. Learning robust and discriminative low-rank
representation for face recognition

3.1. Motivation

LRR has been successfully employed to segment data drawn from a
union of multiple linear (or affine) subspaces. It aims at finding the
lowest-rank representation of a collection of vectors jointly. Also, LRR
gives a way to recover the corrupted data drawn from multiple
subspaces. We give an example by selecting a set of face images from
the Extended Yale B database [71]. Each image has 96x84 pixels. For
each subject, three images are randomly selected and imposed block
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occlusion. In this case, for classification purpose, it is desired to obtain
the robust and discriminative representation and remove the occlusion
simultaneously. In Fig. 1, we decompose (a) into (b) and (c). The
images in Fig. 0.1(b) (i.e., DZ) are called “corrected images” and the
ones in Fig. 0.1(c) (i.e., E) are called “error images”. By capturing the
global structures and correcting the corruptions in a joint way, we have
the following observations: (i) when the subspaces are independent, it
is proved that there is a lowest-rank representation that reveals the
membership of the samples: the within-cluster affinities are dense, and
the between-cluster affinities are zeroes; (ii) each “error images” itself
can be regarded as a low-rank matrix, refer to Fig. 0.1(c).

The block-diagonal affinity matrix Z can capture the global
structure of data and encode the pairwise affinities between data
vectors: samples within each class will demonstrate similar basic
structures, while between-class samples will have different structures.
The matrix Z can form a low-dimensional vector representation space
and be assumed to be low-rank. Nevertheless, for “error images”, we
consider it individually in the original image space. Our purpose is to
decompose the data matrix X into two parts DZ and E, where Z is a
low-rank matrix in vector representation space, while E contains a
series of low-rank noise images in original image space.

3.2. Problem formulation

Given a set of n images X;, Xo,..., X,,€RP>? from k classes, each
image X; may be contaminated by noise (occlusion, corruption,
illumination changes, etc.). Our goal is to decompose each image as
X;= D(Z;) + E;, where D(Z;) = z,;D; +z»;Do+...+z+D;, and the model
is formulated as:

. n

Juin - rank (2) + 4 Q. rank®) st X=DZ+E, )
where X=[vec(X;), vec(X»),..., vec(X,,)], D=[vec(D;), vec(D»),...,
vec(Dp)] and E=[vec(E,), vec(E,),..., vec(E,,)]. The rank minimization
problem is NP-hard, and in most cases there are no efficient algorithms
that yield exact solutions. A popular heuristic is to replace the rank
function with the nuclear norm. The nuclear norm is a convex
relaxation of rank function and it has been shown that nuclear norm
based models can obtain the optimal low rank solution in a variety of
scenarios [61]. The following nuclear norm optimization problem
provides a good surrogate for problem (5):

min (|Zl + 2> 1Bl s.t. X=DZ+E.
Z.D.E; i=1

O]
The data matrix can be rewritten as X =[Yy, Yo,..., Yz] (Y;€R">"%
denotes the dataset of the ith class, each column of Y; is a sample of
class i and ng denotes the training number of class k) and the
dictionary D =[Dy, D,..., Dz] contains k sub-dictionaries where D;
corresponds to class i. The representation coefficients of X;over D can
be denoted as Z; =[Z; 1; Z; 2;...; Z; 1], where Z; jis the representation
coefficient of X; corresponds to Dj;. To obtain a low-rank and
discriminative data representation, the dictionary D should have a
powerful discriminative ability. The latent dictionary can encourage the
data from the same class to have similar representations and those
from different classes to have dissimilar representations. In other
words, the sub-dictionary D;should be able to well represent Y;, and
there is Y; = D;Z; ;+ E;. Z; j, the representation coefficients of Y;over
D;(i%)), are nearly all zeroes. It means that the non-zero coefficients of
samples Y; will only sparsely concentrate on the sub-dictionaries D;.
Suppose that Q =[q1, go,..., gs]JER"*™ is the representation codes
for X over dictionary D. We say that Q=q; =[0,...,1,1,..., 0]eR’ is an
ideal discriminative representation codes for classification correspond-
ing to the input signal x; if the nonzero elements of g; occur at those
indices where the input signal x;and the dictionary atom dj share the
same label. For example, assuming data matrix X=[x;, xo,..., X7] and
dictionary D=[d}, do,..., ds], where x1, x>, d; and d are from class 1, x3,
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X4, X5, d3 and d,4 are from class 2, and xg, X7, d5 and dg are from class 3,
Q can be constructed as

1100000
1100000
Q=0011100
“[oo0o1 1100
00000O0T11
0000O0T11

where each column corresponds to the discriminative representation
codes for an input signal. Although this decomposition might not lead
to minimal reconstruction error, low-rank and sparse Q is an optimal
discriminative representation for classification.

With the above definition and inspired by the work in [67, 70], we
also incorporate the label consistency regularization term into the
objective function. The regularization term encourages the desired
representation Z to be close to the optimal discriminative representa-
tion Q. To obtain discriminative representation, the objective function
in (6) is rewritten as

: 2
Jmin [ Z[ + 2 Y Bk +allZ - QIff
2, D, B

s.t. X=DZ+E, (7)

where a control the contribution of regularization term.

The optimal representation of training and testing data can be
directly used for classification by a multiclass linear classifier as
described in Section 2.2. However, due to the learning of the
representation and classifier are separated, the learned representation
may not be optimal for final classification purpose. As in [70], we aim
to include the classification error in the objective function to make the
leaned representation optimal for classification. Our final objective
function can be formulated as follows:

: 2
min || Zlk + 2 X, il + allZ - QI
Z,D,W.E

R

s.t. X=DZ+E, H= WZ, 8)

where WeR*>? denotes the classifier parameters. H=[hy, ho,...,
h,]JeR**™ are the class label of input signals X. h;=[0, 0,..,1,
..,0,01’eR* is the label vector of signal x;, where the position of
element “1” indicates the class of x;. In model (8), term Y., |IE|\
characterizes the individual reconstruction error, making the model
robust to block occlusion; term [|Z—Q|%> denotes the discriminative
representation error, making the representation codes discriminative
between classes.

Compared with model (2), our model (8) uses a similar way to
characterize the desired representation: samples within each class have
similar structures, while between-class samples have different struc-
tures. The main difference between the two models is that model (2)
converts all error images into vectors and stacks them to form an error
matrix, which is assumed to be sparse. However, our model (8) looks at
noise images in the original image space and assumes each of them to
have low rank, characterized by nuclear norm.

There are some merits of using nuclear norm for structure error
characterization:

(1) Nuclear norm can better reflect variations of structure error than L; or
L, norm. Fig. 2 gives an example. In Fig. 2, image (a) is occluded by a
baboon block as shown in (b). The error image between (b) and (a) is
shown in (c). We re-arrange pixels of image (c) and obtain image (d).
In previous methods, L; or L, norm are usually used to characterize
the error image. However, these norms are based on pixel values, thus
ignore the structural information of the error image. For example, the
L, norm (or L; norm) values of image (c) is the same with that of
image (d). Hence, it is difficult to distinguish the differences between
(c) and (d). Fortunately, the nuclear norm values of images (c) and (d)
are 47.75 and 58.14, respectively.

(2) From the distribution perspective, we can see that the distribution
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Fig. 2. (a) Original image; (b) observed image; (c) error image; (d) rearranged error image; (e) distributions of error image; and (f) distributions of singular values of error image.

of the error image does not follow Laplacian or Gaussian distribu-
tion in Fig. 2(e). As we all know, L; norm provides an optimal
characterization for errors following the Laplacian distribution,
while L, norm is optimal for Gaussian distribution. So, L; and L,
norm cannot characterize this kind of structure error effectively.
Fortunately, as it can be seen from Fig. 2(f) that the singular values
of error image (c) fit the Laplacian distribution well. We know that
nuclear norm is the sum of all singular values of a matrix, which
can also be considered as L; norm of the singular value vector.
Based on the above observations, we believe that nuclear norm is
more suitable to describe the structural error than L; norm and L,
norm.

3.3. Optimization via inexact ALM

Inexact Augmented Lagrange multiplier (ALM), also called the
alternating direction method, has been used to solve many low-rank
problem [61,72]. In this sub-section, we will detail how the ALM is.

adopted to solve problem (8) efficiently. To solve optimization
problem (8), we first convert it to the following equivalent problem:

: 2
min 91k + 2 22, IElk + alld - QIff
Z,D,J,W.E;

s.t. X=DZ+E, H= WZ, Z=/. 9)
The augmented Lagrange function L is given by:
L,Z, D,J,W,E, Y, Y, Y5)

=l + A2 Bl + alld - QI
+<Y, X-DZ-E>+ <Y, H-WZ> + <Y;,
+ 25X = DZ - E[; + |H - WZI; + [1Z - JI)

7z -J>

(10

where <A,B>=trace (ATB), Y1,Y, and Y; are the Lagrange multi-
plier, >0 is a penalty parameter. The above problem is uncon-
strained. So it can be minimized with respect to Z, D, J, W and E,
respectively, by fixing other variables, and then updating the Lagrange
multiplier Y1, Y» and Y.

For convenience, let us rewrite the augmented Lagrange function
(10) as
L,(Z, D,J,W.E, Y. Y. Y)
= Ik + 227 IEill + alld - QI
+ 21X = DZ — E + Yiul + IH - WZ + Yo/ul[}
+1Z = J + Yolull})

— NI + %I + %I D

Updating J
Given Z, D, W and E;, the objective function L,, in Eq. (11) can be
rewritten as

LD = 1Tl + alld = Qll  + 511Z = J + Ya/ul;

=|Jlk + aTr(J - QTJ — Q)
+ grr((z —J+ Y/ (Z — T + Ys/p))

2a+pu

_ 20+ p Ty _ 2a T 1 T M T
- ”J”* + TTr[J J 2( Q + 2a+;lY3 + 2(1+/4Z )J]

+ constl

2a+pu
2

= |IJll + F? + const2,

20+ p 2a+p 2a+p

J—(Z“Q+ Ly 4t z)

(12)

where constland const2 are constant terms, which are independent
with the variable J. The optimization problem can be expressed as

Jl = arg min J
gJ Yt a (11}

2

+

2 20 + u 20 + p 2004 p e

(13)

The optimal solution can be obtained by the singular value thresh-
olding operator. Specifically, given a matrix T eRP>*? of rank r, its
singular value decomposition (SVD) is
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Fig. 3. Convergence analysis of RDLRR algorithm with face recognition on (a) Extended Yale B database with illumination; (b)—(c) AR database with sunglass and scarf; (d)—(f)
Extended Yale B database occluded with unrelated block image, random block and mixed noise.

X = diag(oy, ...

T = Upy, Vi, ,01), 14

Fig. 4. Samples images of a person under different illumination conditions in the
Extended Yale B database from different sessions.

where oy, ..., 0, are singular values, U and V are corresponding

matrices with orthogonal columns. For a given 7 > 0, the singular value
shrinkage operator D.(s) is defined as follows

D.(T) = U,,X,diag({max(o, o — T)}ISJ.Sr)V;(,. 15)

Theorem 1. [73]: For matrix T eRP>*?and 7> 0, the singular value
shrinkage operator in (15) obeys.

) 1
D.(T) = arg mm(rllJlI* + EHJ - TII%)-
J

(16)
From Theorem 1, the optimal solution of (13) is
Jk+l =D 1 2a 1 Y3 + H VAR
2atu\ 200 + p 20 + p 20 4 p 17)

Updating Z.
Given J, D,W and E;, the optimization problem can be reformu-
lated as

134

100 ‘ : : : : ‘ ‘ ‘
886 883 89.6 o3

874

80

60

40

Recognition rate

20

CRC

SRC RSC HQ M NSC LRSI LSLR RDLRR

Fig. 5. Recognition rate (%) of each method under different illumination conditions on
the Extended Yale B database.

7+ = arg ming(nx —DZ - E + Y/ull + |H — WZ + Yo/ul2
VA

+1Z = J + Ylul2). 18)

This equation is a quadratic form in variable Z. Differentiating
L,(Z) with respect to Z, and let it be zero, we can obtain the optimal
solution as follows:

71 = (WTW + D'D + I)“(WTH +D'X -D'E +1]

u 19)
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(©) 8]

(2 (h)

Fig. 6. Comparison of representations for testing samples from the first five classes on the Extended Yale B database. (a) CRC; (b) SRC; (¢) RSC; (d) HQ_M; (e) NSC; (f) LRSI; (g) LSLR;

(h) RDLRR.

(a)

(b)

(c)

Fig. 7. Examples of image decomposition for testing samples on the Extended Yale B database. (a) original faces; (b) the recovered component DZ; (c) the noise component E.

Session 2

Session 1

Session 3 Session 4

Fig. 8. Samples images of a person under different illumination conditions in the CMU Multi-PIE database from different sessions.

Table 1
Comparisons of recognition rates (%) on the Multi-PIE database under different
illuminations.

Methods Session 2 Session 3 Session 4
CRC[36] 76.1 85.4 90.7
SRC[33] 77.8 86.2 92.6
RSC[49] 76.5 86.0 91.7
HQ_M[50] 77.8 87.9 91.2
NSC[52] 77.3 88.3 92.9
LRSI[59] 78.6 88.2 93.5
LSLR[67] 78.9 89.3 93.2
RDLRR 80.3 91.2 94.8

Updating D.
Given J, Z,W and E;, D is the only variable in this sub-problem. So
Eq. (11) can be rewritten as

D = arg min & (X = DZ — E + Yi/u|2).

gD 2(II ) 20)

Setting the partial derivative of L with respect to D equal to zero, we
obtain

D! = (X — E + Yi/u)ZT (ZZ7)\. @1

Updating E.
Given Z, D, W and J, the objective function L,, in Eq. (11) can be
rewritten as

L,E)=2Y"_ |El: - <Y, E>+5|X-DZ-E|l;

AX Bl — X0 sum(YE) + 45 X 1Xi—D (Z)—Ei|}

X Al — sum (5-E)) + 511X=D (Z)-Eil[7 }
2

2
=3, {/HIE,-H* +h F},

where D(Z;) = z;;D; +2p;Do+...+2;;D,, each Dj(j=1,...,t) is a matrix,
sum(X) sums all elements of matrix X, and symbol - denotes
Hadamard product. Each E;(i=1,...,n) in (22) is separable and can be
solved one by one. Thus, the optimization problem can be reformulated
as

X~D(Z)-E; + ¥

(22)

2

. 1
S = argmin 2L + 1
u 2

E - (&—D(Zi) + lYf‘)
E; H

F

(23)

By Theorem 1, the optimal E/*1 can be obtained as follows:
B+ = Di(xi ~D@)+ lYﬁ').

# U 24)

Updating W.
Given Z,J and E, the optimization problem can be rewritten as

Wil = arg min |[H — WZ + Ya/ully. + nlW|i.
w (25)

We add a regularization term #||W|[% into (25) to make the solution
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Sunglass Scarf

Fig. 9. Sample images of a person from Session 1 in the AR database.

Table 2
Comparisons of recognition rates (%) with different percentages of disguise occlusion in the training set.

Methods 3/(2+3)=60% 3/(3+3)=50% 3/(4+3)=43% 3/(5+3)=38%
Sunglasses Scarf Sunglasses Scarf Sunglasses Scarf Sunglasses Scarf
CRCI[36] 87.3 80.7 88.3 80.7 88.0 80.7 87.0 84.3
SRC[33] 88.7 80.0 90.0 81.3 89.3 82.7 88.0 85.3
RSC[49] 89.0 80.0 90.3 81.3 90.3 85.9 88.7 84.0
HQ_M[50] 89.3 76.7 89.3 79.7 89.7 78.0 88.0 83.3
NSC[52] 89.7 83.7 89.7 84.0 89.7 86.0 89.0 87.7
LRSI[59] 88.6 82.5 90.3 83.5 90.5 84.3 89.0 86.4
LSLR[67] 89.3 85.3 90.3 86.7 90.7 86.2 90.0 87.0
RDLRR 91.3 88.3 92.0 91.0 92.0 88.7 91.7 90.0
Table 3 el 2a 1 u
Comparisons of recognition rates (%) with different percentages of disguise occlusion in Step 1: J**'=D 1 + Y + /AR
. 2a+u\ 2 + u 2004 p 20 + pu
the training set.
Methods Sunglasses+Scarf Step 2: ZH!'= (W'W + D'D + 1) _I(WTH +D'X-D'E +]
2/(4+2)=33% 4/(2+4)=67% 6/(0+6)=100% + pTY; + W'Y, — Y3)
p .
CRC[36] 77.3 78.3 79.0
SRC[33] 78.7 79.5 79.8 kel 1y,
RSC[49)] 79.2 79.3 80.7 Step 3: E*" = Da|X; - D(Z)) + ;Yl :
HQ_M][50] 79.5 79.5 80.7 el - .
NSC[52] 79.8 80.3 81.0 Step 4: D*' = (X — E + YW Z' (ZZ")
LRSI[59] 79.3 80.0 80.5 Step 5: Wrtl = (H + Yo/u)ZT(ZZT + nD)1.
LSLRI[67] 80.0 80.1 80.5 il P
RDLRR 81.2 82.2 82.5 Y, =Y +pX-D"Z -E™)

Step 6: Y2k+l — Y2k + ﬂ(H _ Wk+lzk+1)
Y3k+l = ng + ﬂ(Zk+1 - Jk+1) .

u=min (pu, max,,).
end while

more stable, where 7 is a small scalar variable (it is set as 0.001 in all
our experiments). Since problem (25) is a standard Ridge regression
model, we can get its close-form solution

Whtl = (H + Yo/u)ZT (ZZT + nI)~. (26)

Initialization

We need to initialize W° for RDLRR. Given the initialized D° (X in
this paper), we apply the original low-rank model (i.e., model (2)) to
compute the low-rank representation Z for training signals X. To
initialize W°, we employ the multivariate ridge regression model, with
the quadratic loss and L, norm regularization, as follows:

Algorithm 2. Solving Problem (8) by Inexact ALM.

Input: A set of Data matrices X, Xo,..., X,,€RP>*<, Dictionary D,

Parameters 4, a, W = arg min||H — WZIG: + 1| W]
Output: Z, E w 27)
Initialize: W°,Z° = J° = E° = Y;° = Y5° =0, Lo . —

u=1 0’6,max,l —10'°, p=1.1,6=10"° which yields the following solution:
while||X — D¥IZHL — B o > e or || ZM — JH)| o, > edo W = HZ"(ZZ" + nI)~. (28)

In summary, the pseudo code of our method to solve problem (8) is
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(a) (b) (©) (d)
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Fig. 10. Comparison of representations for testing samples from the first ten classes on the AR database. (a) CRC; (b) SRC; (¢) RSC; (d) HQ_M; (e) NSC; (f) LRSI; (g) LSLR; (h) RDLRR.

(c) the noise component E

Fig. 11. Examples of image decomposition for testing samples from two classes on the AR database.

shown in Algorithm 2.
3.4. Complexity analysis

Given the training sample size n and the image size pxgq, let m=pxq.
For the convenience of analysis, we assume that the sizes of both X and
D are mxn in the following. The major computation of Algorithm 2 is
at Step 1 and Step 4, which requires computing the SVD of an nxn
matrix and n pxq matrices. For a matrix in R, the exact SVD has a
computational complexity of O(n®), while for n matrices in RP*9, the
computational complexity is O(min(p3q, pg®)). In the case that p=g, the
computational complexity becomes O(m'?®). So, the computational
complexity of the algorithm is O(n®+nm!?).

When the number of data samples n is large, the SVD process in
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Step 1 will be time consuming. Fortunately, the computational cost can
be reduced by Theorem 4.3 of [64], which concludes that the optimal
solution Z"(with respect to the variable Z) to (9) always lies within the
subspace spanned by the rows of D, ie., Z" can be expressed as
Z* = P*Z", where P” can be computed in advance by orthogonalizing
the rows of D. Thus, problem (9) can be equivalently transformed into
the following problem by replacing Z with P*Z:

_min [Zll +2 20, [k + ol PZ - QI
ZABE;

s.t. X=AZ+E, H= BZ,

where A=DP", B=WP". Since the number of columns of A is at most m
(assuming m<n), the above problem can be solved with a complexity of
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Fig. 12. The recognition rates (%) of CRC, SRC, RSC, HQ_M, NSC, LRSI, LSLR and
RDLRR with the occlusion (unrelated block image) percentage ranging from 20 to 60.
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Fig. 13. The recognition rates (%) of CRC, SRC, RSC, HQ_M, NSC, LRSI, LSLR and
RDLRR with the occlusion (square random block) percentage ranging from 20 to 60.

O(m*n+ nm'®) by a similar way as Algorithm 2.

Considering the cost of orthogonalization and the number of
iterations, the complexity of Algorithm 2 is om?n) +0(k(m®n+
nm'®)), where k is the number of iterations. The iteration number k
mainly depends on the choice of p: k is smaller while p is larger, and
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Fig. 14. The recognition rates (%) of CRC, SRC, RSC, HQ_M, NSC, LRSI, LSLR and
RDLRR with the occlusion (mixture noise) percentage ranging from 20 to 60.

vice versa. Although larger p may speed up the algorithm, it has the risk
of losing optimality to use large p[72]. Empirically, we always set
p=1.1.

3.5. Convergence analysis

For inexact ALM, which is a variation of exact ALM, its convergence
has been well studied when the number of blocks is at most two [72].
Up to now, it is still difficult to generally ensure the convergence of
inexact ALM with three or more blocks [74]. Since there are three
blocks in Algorithm 2 and the objective function (8) is not smooth, it
would be not easy to prove the convergence of Algorithm 2 in theory.

Fortunately, there actually exist some guarantees for ensuring the
convergence of Algorithm 2. According to the theoretical results in
[75], two conditions are sufficient (but may not necessary) for
Algorithm 2 to

converge: The first condition is that the dictionary matrix D is of
full column rank; the second one is that the optimality gap produced in
each iteration step is monotonically decreasing, namely, the error

2

&g = ” (ZF, J¥) — arg min L,
[A] r
is monotonically decreasing, where z* (respectively, J¥) denotes the
solution produced at the k" iteration, arg ming_yL,, indicates the
“ideal” solution obtained by minimizing the Lagrange function L,, with
respect to both Z and J simultaneously. The first condition is easy to
obey since (8) can be converted into an equivalent problem where the
full column rank condition is always satisfied (see Section 3.3). For the
monotonically decreasing condition, although it is not easy to strictly
prove it, the convexity of the Lagrange function could guarantee its
validity to some extent [75].
In addition, we find that the RDLRR algorithm converges asymp-
totically in our experiments. Fig. 3 illustrates the convergence of
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Fig. 15. Comparison of representations for testing samples from the first ten classes on the Extended Yale B database. (a) CRC; (b) SRC; (¢) RSC; (d) HQ_M; (e) NSC; (f) LRSI; (g)
LSLR; (h) RDLRR.
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Fig. 16. Recovered images and occluded parts for testing samples on the Extended Yale B database.
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Fig. 17. Recognition rates of RDLRR with different parameters in different face recognition scenarios. (a) Parameter A and (b) parameter a.
RDLRR on some face database. Fig. 3(a) demonstrates that the value of unrelated block image, random block and mixed noise, respectively.

the objective function (8) almost tends to be stable after 15 iterations

on Extended Yale B database with illumination. Fig. 3(b)—(c) shows 4. Experimental results and discussions

that the value of the objective function (8) decreases fast and converges

after 15 iterations on AR database with sunglass and scarf. Fig. 3(d)—(f) In this section, we evaluate our method on several face databases and
indicates that the value of the objective function (8) becomes stable compare it with state-of-the-art methods: CRC [36], SRC [33], RSC [49],
after 10 iterations on Extended Yale B database occluded with HQ_M (Multiplicative form) [50], NSC [52], LRSI [59] and LSLR [67].
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CRC and SRC are tuned to achieve their best performance by choosing the
optimal regression parameters, while the parameter settings of other
methods follow the authors’ suggestions. It should be mentioned that here
all experiments are done on the original face images, without any feature
extraction and image preprocessing step. Also, in our experiments, both
training and testing data can be occluded.

4.1. Recognition with varying illumination

In this section, we evaluate the proposed method under different
illumination conditions. The first experiment was conducted on the
Extended Yale B database, which contains 38 human subjects under 9
poses and 64 illumination conditions [71]. The 64 images of a person
in a particular pose are acquired at a camera frame rate of 30 frames
per second. So the variations in head poses and facial expressions are
small for those 64 images. All frontal-face images marked with POO are
used in this experiment, and each is resized to 96x84=8064 pixels. The
database is divided into five Subsets (see Fig. 4): Subset 1 is consisted
of 266 images (seven images per subject) under normal lighting
conditions; Subsets 2 and 3, each includes 12 images per subject,
characterizes slight-to-moderate illumination variations, while Subset
4 (14 images per subject) and Subset 5 (19 images per subject)
illustrate severe light variations. As we know, extreme illumination
change is a challenging task for most face recognition methods.
Therefore, we use Subset 4 for training and Subset 5 for testing.

Fig. 5 shows the recognition rates of all methods. From Fig. 5, we
can see that the proposed RDLRR achieves the best results among all
methods. Due to the presence of illumination in training set, the
(robust) regression based methods like SRC, RSC and HQ_M seem not
very robust to extreme illumination changes. By characterizing the
structure error using nuclear norm, NSC can produce better perfor-
mance than SRC, RSC and HQ_M. Both LRSI and LSLR obtain the
similar results as NSC in this case. Fig. 6 illustrates the representations
for the first five subjects. There are 14x5=70 training images and
19x5=95 testing images. The first line shows the testing images’
representations based on CRC, SRC, RSC and HQ_M. Figs. 6(e), 6(f)
and 6(g) are the representations based on NSC, LRSI and LSLR. In our
learned representation, shown in Figs. 6(h), images from the same
class show strong similarities. This representation is much more
discriminative than the others. We also show some decomposition
results in Fig. 7. The first three are original images. The middle and the
last three images are the recovered component and noise component,
respectively.

The CMU Multi-PIE database [76], which contains face images of
337 subjects recorded in four different sessions, was used in the second
experiment. In our experiments, we consider the training set of all 249
subjects in Session 1. For each of the 249 subjects, we select 7 frontal
neutral images with slight illumination changes for training. Thus,
training set has a total of 7x249=1,743 images. All subjects of Session
2, 3 and 4, each having 10 frontal neutral images with different
illumination variations are used or testing. All face images are
manually cropped and resized to 50x40=2,000 pixels. Example images
from the CMU Multi-PIE database are shown in Fig. 8. Table 1
tabulates recognition rates of all methods for the three test sets.
From Table 1, we can see that the proposed RDLRR always achieves
the best performance among all the methods. The robust representa-
tion methods like SRC, RSC, HQ_M and NSC also achieve similar
results in these tests. Note that the illumination conditions of images in
the Multi-PIE database are much better than those in the Extended
Yale B database. Those methods (such as LRSI, LSLR) designed for
recognition cases where both training and testing images are occluded
achieve competitive results in these tests.

4.2. Recognition with real disguise

The AR database [77] contains over 4000 color face images for 126
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people, including frontal views of faces with different facial expres-
sions, lighting conditions and occlusions. For each subject, twenty-six
face images are taken in two separate sessions. There are thirteen
images for each session, in which three images with sunglasses, another
three with scarfs, and the remaining seven are with illumination and
expression changes and they are considered as clean/neutral images
(see Fig. 9 for example). All images are downsampled to 55x40=2200
pixels and converted to gray scale. In this experiment, a subset
containing 50 male and 50 female subjects was chosen. Experiments
are conducted under three different scenarios:

Sunglasses: We first consider occluded training images with the
presence of sunglasses, which occlude about 20% of the face. We
randomly select n. neutral image(s) plus 3 images with sunglasses
from Session 1 for training, and 3 images with sunglasses from Session
2 for testing. To assess the influence of the ratio 3/( n.+3) for robust
face recognition, we vary the number of n. from 2 up to 5.

Scarf: We consider occluded training images occluded by disguise
due to the presence of Scarfs, which occlude about 40% of the face. The
choice of the training and testing set is the same as that for the above
(Sunglasses) case.

Sunglasses+Scarf: For this case, the training images are oc-
cluded due to the presence of sunglasses and scarf. From Session 1, we
randomly select ng, image(s) with sunglasses plus ng. image(s) with
scarf for training (we fix ngg+ns.=6). The numbers of ny, and ng.are
set to be the same, and they range from 1 to 3. The testing set consists
of 3 images with sunglasses and 3 images with scarf (all from Session
2). Note that the setting of this scenario is different from those in
Sunglasses and Scarf. The number of training images in the above
two cases varies with n., while the number of training images in this
scenario is fixed at 6.

Tables 2, 3 show the recognition results of the above three scenarios
using different approaches. From these two tables, we can see that our
method generally outperforms all other methods across different
settings. In Table 2, we observe that for testing images with sunglass,
where the occlusion level (about 20%) is relatively low, there is no
significant performance difference between all these methods.
However, when the occlusion level becomes larger (about 40%), in
the case of images with scarves, the advantage of the proposed RDLRR
becomes evident. In addition, the difference in recognition rates of
other methods between the two scenarios is large, which demonstrates
that these methods are sensitive to the type of occlusions to some
extent. In contrast, our method has much smaller performance gap,
which illustrates that our method is much less sensitive to the type of
occlusions in the training set.

We visualize the representations for the first ten subjects under the
scarf scenario. There are 6x10=60 training images and 3x10=30
testing images. Figs. 10(a)—(d) shows the testing images’ representa-
tions based on CRC, SRC, RSC and HQ_M. Figs. 10(e)—(h) are the
representations based on NSC, LRSI, LSLR and our method. The
testing images automatically generate a block diagonal structure in
LSLR and our method, which is absent in other approaches.

The image decomposition examples are shown in Fig. 11. The first
row is the original occluded images. The second shows the recovered
component and the third is the separated noises. Our approach can
remove real disguise such as sunglasses and scarves from the original
images.

4.3. Recognition with random block occlusion

In this part, we test the robustness of our method to block
occlusion. We use Subset 1 of Extended Yale B for training and
Subset 2 for testing. In the first experiment, both the training and
testing images are corrupted by a randomly located square block of
“baboon” image with varying block size. The block size determines the
occlusion level of an image. Fig. 12 plots the recognition rates of each
method versus different occlusion levels (from 20% to 60%). We can
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see that with the increase of the occlusion levels, the proposed RDLRR
begins to outperform other methods. When occlusion level is no more
than 30%, LSLR achieves similar performance with RDLRR. When the
occlusion level becomes larger (more than 50%), the advantage of
RDLRR becomes evident. When occlusion level is 60%, the recognition
rate of RDLRR is 10%, 34.6%, 38.1% and 43.3% higher than that of
LSLR, NSC, RSC and SRC, respectively.

The setting of the second experiment is similar to that of the first
one. The only difference is that Subset 2 with square random block
whose elements are random numbers between 0 and 255 is used for
testing. The recognition rates of each method versus various occlusion
levels (from 20% to 60%) are shown in Fig. 13. Generally, the results in
Fig. 13 are consistent with those in Fig. 12. The proposed RDLRR
always achieves the best performance in both occlusion cases. The
performance of RSC and HQ_M are not good in this case. NSC achieves
comparable results when the occlusion level is low than 50%. The
performance difference between RDLRR and LSLR are not remarkable
as that in Fig. 12 when the occlusion level is equal or larger than 50%.
The recognition rates of CRC drop fast with the increase of the
occlusion levels.

In the third experiment, we also use Subset 1 and Subset 2 for
training and testing respectively. Each image is occluded with the
mixture noise (pixel corruption and block occlusion). Fig. 14 plots the
recognition rates of each method with different pixel corruption (and
block occlusion) levels (from 20% to 60%). It can be seen from Fig. 14
that the performance of each method degrades with the increase of the
mixture noise levels. However, the proposed RDLRR still achieves the
best results among all the methods. The recognition rates of HQ_M
and NSC are poor when facing the mixture noises. The probable reason
may be that each of HQ_M and NSC is designed to address the single
type noise.

Fig. 15 also shows the representations for the first ten subjects
under the mixture noise scenario with the occlusion percentage is 50%.
There are 7x10=70 training images and 12x10=120 testing images.
Our representation can preserve well the structure information through
representation similarity. Although the training images are severely
occluded, we are able to learn robust and discriminative representa-
tion. Fig. 16 shows some results of image decomposition on the
Extended Yale B database. We also list the results of LSLR [67]
method for comparison. From Fig. 16, we can observe that RDLRR can
better characterize the occlusion and capture more detailed informa-
tion of images than LSLR method.

4.4. Parameter discussion

In this part, we will study the impact of A and a on the recognition
performance of the proposed method in different face recognition
scenarios. The experimental setting is the same as the above experi-
ments. In our experiments, we just change one parameter while fixing
the other one. For face recognition with illumination changes, Subset 4
of the Extended Yale B database is used for training and Subset 5 for
testing. For Multi-PIE database, Session 1 with slight illumination
changes is used for training and Session 2 for testing. For face
recognition with real disguise, 6 images (3 neutral images plus 3
images with sunglasses or scarf) in session 1 are used for training, 3
images with sunglasses or scarf in session 2 are used for testing. For
face recognition with occlusions, Subset 1 of the Extended Yale B
database is used for training and Subset 2 for testing (occlusion level is
40%).

Fig. 17 shows the recognition rates of RDLRR versus different
parameters in different face recognition scenarios. From Fig. 17(a), we
can see that RDLRR always achieves better performance when para-
meter A is larger than 3. In Fig. 17(b), for face recognition with
illumination changes, Sunglasses and Scarf, RDLRR always achieves
better performance when parameter a is lower than 0.5. For face
recognition with occlusions, RDLRR always achieves stable perfor-
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mance when «a varies from 0.1 to 1.
4.5. Limitations

Similar to other representation-based methods for face recognition,
registered face images are needed for training and testing in our
method. In other words, such approaches cannot directly be applied for
recognizing face images with pose variations. Thus, these methods are
particularly favorable for applications such as access control, automatic
teller machine, or other security facilities. In such scenarios, one can
collect controlled (registered) training images in advance, and the test
image can be captured under the same (or very similar) environments.
However, if the registered face images are not available for either
training or testing (but only with shift and in-plane rotation variations),
one can apply existing image registration techniques like RASL [78],
which can alleviate the above limitations for representation-based
approaches.

5. Conclusions

In this paper, we proposed to learn robust and discriminative low-
rank representation (RDLRR) for robust face recognition in case that
both training and testing images are corrupted due to occlusion. By
introducing low-rank assumption to characterize the representation
and each error term simultaneously, RDLRR could capture the global
structure of data and the holistic structure of each error image. By
adding an ideal-code regularization term and the classification error
constraint, the learned representation was optimal for classification
purpose. After obtaining the robust and discriminative representation,
a simple yet powerful linear multi-classifier was used for final
classification tasks. Extensive experiments demonstrated that the
proposed RDLRR was robust to corruptions: illumination changes,
real disguise and block occlusion, and yielded better performances
compared to state-of-the-art methods.

Acknowledgement

The authors would like to thank the editor and the anonymous
reviewers for their critical and constructive comments and suggestions.
This work was partially supported by the National Science Fund for
Distinguished Young Scholars under Grand nos. 61125305, 61472187,
61233011 and 61373063, the National Natural Science Foundation of
China under Grant nos. 61272273, 61375001, 61401228, 61473086,
61502245, 61503195, 61502081, 61533010, 61502244 and 61503188,
the China Postdoctoral Science Foundation under Grant nos.
2015M581841 and 2016M600433, the Natural Science Foundation
of Jiangsu Province under Grant nos. BK20150849 and BK20150982,
the Key Project of Chinese Ministry of Education under Grant no.
313030, the 973 Program no. 2014CB349303, and Program for
Changjiang Scholars and Innovative Research Team in University
(No. IRT13072).

References

[1] X. Wen, L. Shao, Y. Xue, W. Fang, A rapid learning algorithm for vehicle
classification,, Inf. Sci. 295 (2015) 395-406.

G. Gao, J. Yang, J. Qian, L. Zhang, Integration of multiple orientation and texture
information for finger-knuckle-print verification, Neurocomputing 135 (2014)
180-191.

Z. Xia, X. Wang, L. Zhang, Z. Qin, X. Sun, K. Ren, A privacy-preserving and copy-
deterrence content-based image retrieval scheme in cloud computing, IEEE Trans.
Inf. Forensics Secur. 11 (11) (2016) 2594—2608.

J. Li, X. Li, B. Yang, X. Sun, Segmentation-based image copy-move forgery
detection scheme, IEEE Trans. Inf. Forensics Secur. 10 (3) (2015) 507-518.

F. Shen, C. Shen, X. Zhou, Y. Yang, H.T. Shen, Face image classification by pooling
raw features, Pattern Recognit. 54 (2016) 94-103.

Z. Zhou, Y. Wang, Q. Wu, C. Yang, X. Sun, Effective and efficient global context
verification for image copy detection, IEEE Trans. Inf. Forensics Secur. (2016).
http://dx.doi.org/10.1109/TIFS.2016.2601065.

[2]

[3]

[4]

[5

=

[6]


http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref1
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref1
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref2
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref2
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref2
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref3
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref3
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref3
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref4
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref4
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref5
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref5
http://dx.doi.org/10.1109/TIFS.2016.2601065

G. Gao et al.

(7]
(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]
[19]
[20]
[21]

[22]

[23]
[24]
[25]

[26]

[27]

[28]
[29]
[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

S. Barra, A. Casanova, F. Narducci, S. Ricciardi, Ubiquitous iris recognition by
means of mobile devices, Pattern Recognit. Lett. 57 (2015) 66—73.

C. Ding, D. Tao, Robust face recognition via multimodal deep face representation,
IEEE Trans. Multimed. 17 (11) (2015) 2049-2058.

F. Shen, C. Shen, Q. Shi, A. van den Hengel, Z. Tang, H.T. Shen, Hashing on
nonlinear manifolds, IEEE Trans. Image Process. 24 (6) (2015) 1839-1851.

Z. Fu, X. Wu, C. Guan, X. Sun, K. Ren, Toward efficient multi-keyword fuzzy search
over encrypted outsourced data with accuracy improvement, IEEE Trans. Inf.
Forensics Secur. 11 (12) (2016) 2706—2716.

Z. Xia, X. Wang, X. Sun, Q. Wang, A secure and dynamic multi-keyword ranked
search scheme over encrypted cloud data, IEEE Trans. Parallel Distrib. Syst. 27 (2)
(2016) 340-352.

Z. Pan, Y. Zhang, S. Kwong, Efficient motion and disparity estimation optimization
for low complexity multiview video coding, IEEE Trans. Broadcast. 61 (2) (2015)
166-176.

C. Yuan, X. Sun, R. Lv, Fingerprint liveness detection based on multi-scale LPQ and
PCA, China Commun. 13 (7) (2016) 60—65.

Z. Xia, X. Wang, X. Sun, Q. Liu, N. Xiong, Steganalysis of LSB matching using
differences between nonadjacent pixels, Multimed. Tools Appl. 75 (4) (2016)
1947-1962.

Y. Zheng, B. Jeon, D. Xu, Q. Wu, H. Zhang, Image segmentation by generalized
hierarchical fuzzy C-means algorithm, J. Intell. Fuzzy Syst. 28 (2) (2015) 961-973.
G. Gao, L. Zhang, J. Yang, L. Zhang, D. Zhang, Reconstruction based finger-
knuckle-print verification with score level adaptive binary fusion, IEEE Trans.
Image Process. 22 (12) (2013) 5050-5062.

AK. Jain, A. Ross, S. Prabhakar, An introduction to biometric recognition, IEEE
Trans. Circuits Syst. Video Technol. 14 (1) (2004) 4-20.

Z. Lai, Y. Xu, Q. Chen, J. Yang, D. Zhang, Multilinear sparse principal component
analysis, IEEE Trans. Neural Netw. Learn. Syst. 25 (10) (2014) 1942-1950.

Z. Lai, W.K. Wong, Y. Xu, C. Zhao, M. Sun, Sparse alignment for robust tensor
learning, IEEE Trans. Neural Netw. Learn. Syst. 25 (10) (2014) 1779-1792.
W.K. Wong, Z.-H. Lai, Y. Xu, J. Wen, C.P. Ho, Joint tensor feature analysis for
visual object recognition, IEEE Trans. Cybern. 45 (11) (2015) 2425-2436.

M. Yang, P. Zhu, F. Liu, L. Shen, Joint representation and pattern learning for
robust face recognition, Neurocomputing 168 (2015) 70-80.

Z. Lai, W.K. Wong, Y. Xu, J. Yang, D. Zhang, Approximate orthogonal sparse
embedding for dimensionality reduction, IEEE Trans. Neural Netw. Learn. Syst. 27
(4) (2016) 723-735.

B. Chen, H. Shu, G. Coatrieux, G. Chen, X. Sun, J.L. Coatrieux, Color image analysis
by quaternion-type moments,, J. Math. Imaging Vis. 51 (1) (2015) 124-144.

W. Yang, Z. Wang, C. Sun, A collaborative representation based projections method
for feature extraction, Pattern Recognit. 48 (1) (2015) 20-27.

R. He, Y. Zhang, Z. Sun, Q. Yin, Robust subspace clustering with complex noise,
IEEE Trans. Image Process. 24 (11) (2015) 4001-4013 (Nov).

R. He, W.-S. Zheng, B.-G. Hu, X.-W. Kong, Two-stage nonnegative sparse
representation for large-scale face recognition, IEEE Trans. Neural Netw. Learn.
Syst. 24 (1) (2013) 35-46.

J. Gui, Z. Sun, W. Jia, R. Hu, Y. Lei, S. Ji, Discriminant sparse neighborhood
preserving embedding for face recognition, Pattern Recognit. 45 (8) (2012)
2884-2893.

P. Huang, C. Chen, Z. Tang, Z. Yang, Feature extraction using local structure
preserving discriminant analysis, Neurocomputing 140 (2014) 104-113.

H. Nguyen, W. Yang, F. Shen, C. Sun, Kernel Low-Rank Representation for face
recognition, Neurocomputing 155 (2015) 32—42.

P. Huang, G. Gao, Parameterless reconstructive discriminant analysis for feature
extraction, Neurocomputing 190 (2016) 50-59.

X.-Y. Jing, F. Wu, X. Zhu, X. Dong, F. Ma, Z. Li, Multi-spectral low-rank structured
dictionary learning for face recognition, Pattern Recognit. 59 (2016) 14-25.

C. Xiong, L. Liu, X. Zhao, S. Yan, T.-K. Kim, Convolutional fusion network for face
verification in the wild, IEEE Trans. Circuits Syst. Video Technol. 26 (3) (2016)
517-528.

J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, Y. Ma, Robust face recognition via
Sparse representation, IEEE Trans. Pattern Anal. Mach. Intell. 31 (2) (2009)
210-227.

1. Naseem, R. Togneri, M. Bennamoun, Linear Regression for Face Recognition,
IEEE Trans. Pattern Anal. Mach. Intell. 32 (11) (2010) 2106—-2112.

A. Wagner, J. Wright, A. Ganesh, Z. Zhou, H. Mobahi, Y. Ma, Toward a practical
face recognition system: Robust alignment and illumination by sparse representa-
tion, IEEE Trans. Pattern Anal. Mach. Intell. 34 (2) (2012) 372-386.

L. Zhang, M. Yang, X. Feng, Sparse representation or collaborative representation:
Which helps face recognition? in: Proceedings of the 2011 IEEE International
Conference on Computer Vision (ICCV), 2011, pp. 471-478.

B. Gu, V.S. Sheng, K.Y. Tay, W. Romano, S. Li, Incremental support vector learning
for ordinal regression, IEEE Trans. Neural Netw. Learn. Syst. 26 (7) (2015)
1403-1416.

B. Gu, V.S. Sheng, Z. Wang, D. Ho, S. Osman, S. Li, Incremental learning for v-
support vector regression, Neural Netw. 67 (2015) 140-150.

G. Gao, J. Yang, S. Wu, X. Jing, D. Yue, Bayesian sample steered discriminative
regression for biometric image classification, Appl. Soft Comput. 37 (2015) 48-59.
B. Gu, V.S. Sheng, A Robust regularization path algorithm for v-support vector
classification, IEEE Trans. Neural Netw. Learn. Syst. (2016). http://dx.doi.org/
10.1109/TNNLS.2016.2527796.

B. Gu, X. Sun, V.S. Sheng, Structural Minimax probability machine, IEEE Trans.
Neural Netw. Learn. Syst. (2016). http://dx.doi.org/10.1109/
TNNLS.2016.2544779.

F. Yin, L. Jiao, F. Shang, L. Xiong, S. Mao, Double linear regressions for single

142

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Pattern Recognition 66 (2017) 129-143

labeled image per person face recognition, Pattern Recognit. 47 (4) (2014)
1547-1558.

L. Luo, J. Yang, J. Qian, Y. Tai, Nuclear-L1 norm joint regression for face
reconstruction and recognition with mixed noise, Pattern Recognit. 48 (12) (2015)
3811-3824.

F. Shen, C. Shen, A. van den Hengel, Z. Tang, Approximate least trimmed sum of
squares fitting and applications in image analysis, IEEE Trans. Image Process. 22
(5) (2013) 1836-1847.

G. Gao, J. Yang, A novel sparse representation based framework for face image
super-resolution, Neurocomputing 134 (2014) 92-99.

A. Tawari, M.M. Trivedi, Face expression recognition by cross modal data
association, IEEE Trans. Multimed. 15 (7) (2013) 1543-1552.

B. Ma, J. Shen, Y. Liu, H. Hu, L. Shao, X. Li, Visual tracking using strong classifier
and structural local sparse descriptors, IEEE Trans. Multimed. 17 (10) (2015)
1818-1828.

J. Yang, L. Zhang, Y. Xu, J.-y. Yang, Beyond sparsity: the role of L 1-optimizer in
pattern classification, Pattern Recognit. 45 (3) (2012) 1104-1118.

M. Yang, L. Zhang, J. Yang, D. Zhang, Robust Sparse Coding for Face Recognition,
in: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jun 2011, pp. 625-632.

R. He, W.-S. Zheng, T. Tan, Z. Sun, Half-quadratic-based iterative minimization for
robust sparse representation, IEEE Trans. Pattern Anal. Mach. Intell. 36 (2) (2014)
261-275.

J. Yang, L. Luo, J. Qian, Y. Tai, F. Zhang, Y. Xu, Nuclear norm based matrix
regression with applications to face recognition with occlusion and illumination
changes, IEEE Trans. Pattern Anal. Mach. Intell. 39 (1) (2017) 156-171.

L. Luo, J. Yang, J. Qian, J. Yang, Nuclear Norm Regularized Sparse Coding, in:
Proceedings of the 2014 22nd International Conference on Pattern Recognition
(ICPR), 2014, pp. 1834-1839.

F. Zhang, J. Yang, Y. Tai, J. Tang, Double nuclear norm-based matrix decom-
position for occluded image recovery and background modeling, IEEE Trans.
Image Process. 24 (6) (2015) 1956—1966.

J. Qian, L. Luo, J. Yang, F. Zhang, Z. Lin, Robust nuclear norm regularized
regression for face recognition with occlusion, Pattern Recognit. 48 (10) (2015)
3145-3159.

X.H. Shen, Y. Wu, A Unified Approach to Salient Object Detection via Low Rank
Matrix Recovery, in: Proceedings of the 2012 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jun 2012, pp. 853-860.

X.Y. Cui, J.Z. Huang, S.T. Zhang, D.N. Metaxas, Background Subtraction Using
Low Rank and Group Sparsity Constraints, in: Proceedings of the 2012 European
Conference on Computer Vision (ECCV), Oct 2012, pp. 612—625.

T.Z. Zhang, B. Ghanem, S. Liu, N.Ahuja, Low-Rank Sparse Learning for Robust
Visual Tracking, in: Proceedings of the 2012 European Conference on Computer
Vision (ECCV), Oct 2012, pp. 470—484.

S. Gu, L. Zhang, W. Zuo, X. Feng, Weighted nuclear norm minimization with
application to image denoising, in: Proceedings of the 2014 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2014, pp. 2862—2869.

C.F. Chen, C.P. Wei, Y.C.F. Wang, Low-Rank Matrix Recovery with Structural
Incoherence for Robust Face Recognition, in: Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Jun, 2012, pp.
2618-2625.

C.-P. Wei, C.-F. Chen, Y.-C.F. Wang, Robust face recognition With Structurally
incoherent low-Rank matrix decomposition, IEEE Trans. Image Process. 23 (8)
(2014) 3294-3307.

E.J. Candes, X.D. Li, Y. Ma, J. Wright, Robust principal component analysis? J.
ACM 58 (3) (2011) 1-37.

J. Wright, A. Ganesh, S. Rao, Y. Peng, Y. Ma, Robust principal component analysis:
exact recovery of corrupted low-rank matrices via convex optimization, Adv. Neural
Inf. Process. Syst. (2009) 2080-2088.

L. Ma, C.H. Wang, B.H. Xiao, W. Zhou, Sparse Representation for Face Recognition
based on Discriminative Low-Rank Dictionary Learning, in: Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun
2012, pp. 2586-2593.

G.C. Liu, Z.C. Lin, S.C. Yan, J. Sun, Y. Yu, Y. Ma, Robust Recovery of Subspace
Structures by Low-Rank Representation, IEEE Trans. Pattern Anal. Mach. Intell.
35 (1) (2013) 171-184.

G.C. Liu, S.C. Yan, Latent Low-Rank Representation for Subspace Segmentation
and Feature Extraction, in: Proceedings of the 2011 IEEE International Conference
on Computer Vision (ICCV), Nov 2011, pp. 1615-1622.

Y. M, C. S. T, G. J. B, Robust face recognition via double low-rank matrix recovery
for feature extraction,2013 in: Proceedings of the 20th IEEE International
Conference on Image Processing (ICIP), Sep 2013, pp. 3770-3774.

Y. Zhang, Z. Jiang, L.S. Davis, Learning structured low-rank representations for
image classification, in: Proceedings of the 2013 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2013, pp. 676—683.

M.A. Turk, A.P. Pentland, Face recognition using eigenfaces, in: Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
1991, pp. 586—591.

N. Kwak, Principal component analysis based on L1-norm maximization, IEEE
Trans. Pattern Anal. Mach. Intell. 30 (9) (2008) 1672—1680.

Z. Jiang, Z. Lin, L.S. Davis, Label consistent k-svd: learning a discriminative
dictionary for recognition, IEEE Trans. Pattern Anal. Mach. Intell. 35 (11) (2013)
2651-2664.

K.C. Lee, J. Ho, D.J. Kriegman, Acquiring linear subspaces for face recognition
under variable lighting, IEEE Trans. Pattern Anal. Mach. Intell. 27 (5) (2005)
684-698.


http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref7
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref7
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref8
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref8
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref9
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref9
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref10
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref10
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref10
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref11
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref11
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref11
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref12
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref12
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref12
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref13
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref13
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref14
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref14
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref14
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref15
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref15
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref16
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref16
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref16
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref17
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref17
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref18
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref18
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref19
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref19
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref20
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref20
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref21
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref21
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref22
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref22
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref22
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref23
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref23
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref24
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref24
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref25
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref25
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref26
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref26
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref26
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref27
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref27
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref27
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref28
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref28
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref29
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref29
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref30
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref30
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref31
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref31
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref32
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref32
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref32
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref33
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref33
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref33
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref34
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref34
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref35
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref35
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref35
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref36
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref36
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref36
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref37
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref37
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref38
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref38
http://dx.doi.org/10.1109/TNNLS.2016.2527796
http://dx.doi.org/10.1109/TNNLS.2016.2527796
http://dx.doi.org/10.1109/TNNLS.2016.2544779
http://dx.doi.org/10.1109/TNNLS.2016.2544779
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref41
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref41
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref41
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref42
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref42
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref42
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref43
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref43
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref43
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref44
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref44
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref45
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref45
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref46
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref46
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref46
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref47
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref47
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref48
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref48
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref48
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref49
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref49
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref49
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref50
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref50
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref50
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref51
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref51
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref51
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref52
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref52
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref52
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref53
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref53
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref54
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref54
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref54
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref55
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref55
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref55
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref56
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref56
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref57
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref57
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref57
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref58
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref58
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref58

G. Gao et al.

[72] Z. Lin, M. Chen, and Y. Ma, The augmented lagrange multiplier method for exact
recovery of corrupted low-rank matrices, arXiv preprint arXiv:1009.5055, 2010.
J.F. Cai, E.J. Candes, Z.W. Shen, A singular value thresholding algorithm for matrix
Completion, Siam J. Optim. 20 (4) (2010) 1956-1982.

Y. Zhang, Recent advances in alternating direction methods: Practice and theory,
in: Proceedings of the IPAM Workshop: Numerical Methods for Continuous
Optimization. UCLA, Los Angeles, 2010.

J. Eckstein, D.P. Bertsekas, On the Douglas-Rachford splitting method and the
proximal point algorithm for maximal Monotone-operators, Math. Program. 55 (3)
(1992) 293-318.

R. Gross, I. Matthews, J. Cohn, T. Kanade, S. Baker, Multi-pie, Image Vis. Comput.
28 (5) (2010) 807-813.

A.M. Martinez, R. Benavente, The AR face database, CVC Tech. Rep. 24 (1998).
Y. Peng, A. Ganesh, J. Wright, W. Xu, Y. Ma, RASL: Robust alignment by sparse
and low-rank decomposition for linearly correlated images, IEEE Trans. Pattern
Anal. Mach. Intell. 34 (11) (2012) 2233-2246.

[73]

[74]

[75]

[76]

[771
[78]

Guangwei Gao received the B.S. degree in information and computation science from
Nanjing Normal University, Nanjing, China, in 2009, and the Ph.D. degree in pattern
recognition and intelligence systems from Nanjing University of Science and Technology,
Nanjing, China, in 2014. From March 2011 to September 2011 and February 2013 to
August 2013, he was an exchange student of Department of Computing, Hong Kong
Polytechnic University. Now, he is an assistant professor in the Institute of Advanced
Technology, Nanjing University of Posts and Telecommunications. His research interests
include face recognition, face hallucination and biometrics.

Jian Yang received the BS degree in mathematics from the Xuzhou Normal University
in 1995. He received the MS degree in applied mathematics from the Changsha Railway
University in 1998 and the Ph.D. degree from the Nanjing University of Science and
Technology (NUST), on the subject of pattern recognition and intelligence systems in
2002. In 2003, he was a postdoctoral researcher at the University of Zaragoza. From
2004 to 2006, he was a Postdoctoral Fellow at Biometrics Centre of Hong Kong
Polytechnic University. From 2006 to 2007, he was a Postdoctoral Fellow at
Department of Computer Science of New Jersey Institute of Technology. Now, he is a
professor in the School of Computer Science and Technology of NUST. He is the author
of more than 80 scientific papers in pattern recognition and computer vision. His journal
papers have been cited more than 3000 times in the ISI Web of Science, and 7000 times
in the Web of Scholar Google. His research interests include pattern recognition,
computer vision and machine learning. Currently, he is an associate editor of Pattern
Recognition Letters and IEEE Trans. Neural Networks and Learning Systems, respec-
tively.

143

Pattern Recognition 66 (2017) 129-143

Xiaoyuan Jing received the M.Sc. and Ph.D. degrees in pattern recognition and
intelligence systems from the Nanjing University of Science and Technology, Nanjing,
China, in 1995 and 1998, respectively. He was an Associate Researcher with the Institute
of Automation, Chinese Academy of Sciences, Beijing, China, in 2002. He was a Professor
with the Shenzhen Graduate School, Harbin Institute of Technology, Harbin, China, in
2005. He has been a Research Fellow with Hong Kong Polytechnic University, Kowloon,
Hong Kong. He is currently a Professor and Doctoral Supervisor with the State Key
Laboratory of Software Engineering, Wuhan University, Wuhan, China, and with the
College of Automation, Nanjing University of Posts and Telecommunications, Nanjing.
He has authored and coauthored more than 30 scientific papers in SCI indexed
international journals, such as the IEEE Transactions on Pattern Recognition, Signal
Processing, Pattern Recognition Letters, and Neurocomputing, more than 20 papers in
international conferences, and a book on biometrics from American IGP Press. His
current research interests include pattern recognition, machine learning, data mining,
image processing, neural networks, and artificial intelligence. Currently he is a reviewer
of more than 20 international journals and conferences. He was awarded the New
Century Excellent Talent Award by the Chinese Education Ministry.

Fumin Shen received his Bachelor degree at 2007 and Ph.D. degree at 2014 from
Shandong University and Nanjing University of Science and Technology, China,
respectively. Now he is a lecturer of University of Electronic Science and Technology
of China. His major research interests include computer vision and machine learning,
including face recognition, image analysis and hashing methods.

‘Wankou Yang received his B.S., M.S., and Ph.D. degrees from the School of Computer
Science and Technology, Nanjing University of Science and Technology, China, in 2002,
2004, and 2009, respectively. He is currently an Assistant Professor in School of
Automation, Southeast University, Nanjing, China. He has published over 60 high-
quality research articles on the professional journals and conferences. His research
interests include pattern recognition, image processing and machine learning.

Dong Yue received the Ph.D. degree from the South China University of Technology,
Guangzhou, China, in 1995. He is currently a Professor and the Dean with the Institute of
Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing,
China, and also a Changjiang Professor with the Department of Control Science and
Engineering, Huazhong University of Science and Technology, Wuhan, China. His
current research interests include analysis and synthesis of networked control systems,
multiagent systems, optimal control of power systems, and internet of things. He has
published over 100 papers in international journals, domestic journals, and international
conferences. Prof. Yue is currently an Associate Editor of the IEEE Control Systems
Society Conference Editorial Board and the International Journal of Systems Science.


http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref59
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref59
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref60
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref60
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref60
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref61
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref61
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref62
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref63
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref63
http://refhub.elsevier.com/S0031-3203(16)30442-3/sbref63

	Learning robust and discriminative low-rank representations for face recognition with occlusion
	Introduction
	Low-rank matrix recovery for classification
	Low-rank matrix recovery
	Classification

	Learning robust and discriminative low-rank representation for face recognition
	Motivation
	Problem formulation
	Optimization via inexact ALM
	Complexity analysis
	Convergence analysis

	Experimental results and discussions
	Recognition with varying illumination
	Recognition with real disguise
	Recognition with random block occlusion
	Parameter discussion
	Limitations

	Conclusions
	Acknowledgement
	References




