
Pattern Recognition 110 (2021) 107539 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Constructing multilayer locality-constrained matrix regression 

framework for noise robust face super-resolution 

Guangwei Gao 

a , b , c , ∗, Yi Yu 

b , Jin Xie 

d , Jian Yang 

d , Meng Yang 

e , Jian Zhang 

f 

a Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing, China 
b Digital Content and Media Sciences Research Division, National Institute of Informatics, Tokyo, Japan 
c Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, Suzhou, China 
d School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China 
e School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China 
f Global Big Data Technologies Center, University of Technology Sydney, Ultimo, NSW, Australia 

a r t i c l e i n f o 

Article history: 

Received 16 October 2019 

Revised 22 May 2020 

Accepted 3 July 2020 

Available online 4 July 2020 

Keywords: 

Nuclear norm 

Matrix based regression 

Face super-resolution 

Position-patch 

a b s t r a c t 

Representation learning methods have attracted considerable attention for learning-based face super- 

resolution in recent years. Conventional methods perform local models learning on low-resolution (LR) 

manifold and face reconstruction on high-resolution (HR) manifold respectively, leading to unsatisfactory 

reconstruction performance when the acquired LR face images are severely degraded (e.g., noisy, blurred). 

To tackle this issue, this paper proposes an efficient multilayer locality-constrained matrix regression (ML- 

CMR) framework to learn the representation of the input LR patch and meanwhile preserve the manifold 

of the original HR space. Particularly, MLCMR uses nuclear norm regularization to capture the structural 

characteristic of the representation residual and applies an adaptive neighborhood selection scheme to 

find the HR patches that are compatible with its neighbors. Also, MLCMR iteratively applies the man- 

ifold structure of the desired HR space to induce the representation weights learning in the LR space, 

aims at reducing the inconsistency gap between different manifolds. Experimental results on widely used 

FEI database and real-world faces have demonstrated that compared with several state-of-the-art face 

super-resolution approaches, our proposed approach has the capability of obtaining better results both in 

objective metrics and visual quality. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The details of facial features play crucial roles on distinguish-

ng subjects in surveillance applications. However, the captured fa-

ial region of interest generally has low-quality because of the re-

traints of hardware storage, long distance to the interested object

nd other constraints in electric imaging system. Thus, the limited

iscriminative details extracted from these low quality faces sig-

ificantly affect the system performance of face recognition [1–3] .

ace super-resolution, also called face hallucination, is the solution

hat predict high-quality images from low-quality query images to

rovide rich facial features in the recognition system. Learning-

ased face super-resolution has been a very active research topic,

hich motivates us to work on it with more advanced algorithms. 

The earliest learning-based face super-resolution work was de-

eloped by Freeman et al. [4] to predict the potential relation-
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hip between low-resolution (LR) and high-resolution (HR) patches

ia a Markov network. After that, some machine learning-based

pproaches have been exploited. Shi et al. [5] designed a uni-

ed framework that combines global consistency, local sparsity,

nd pixel correlation to super-resolve the desired faces. A two-

imensional manifold learning based technology was presented in

6] to maintain the latent relation between the LR and HR faces

n their original 2D form. By using domain knowledge and sparse

ecovery algorithms, Abiantun et al. [7] proposed to super-resolve

aces with very low resolutions. 

Although these aforementioned global models have achieved

atisfactory results in most cases, they will fail in preserving some

istinct individual details of the query LR faces sometimes. Ma

t al. [8] presented a least square-based face hallucination method

hrough position patch. Then, many researchers integrated the po-

ition prior to face image reconstruction [9–11] based on a fact that

uman faces have distinct structures. To alleviate the trouble that

he least square representation may generate a nonunique solu-

ion in case that the training dictionary has bigger size, Jung et al.

12] desired to automatically choose principal training patches to

https://doi.org/10.1016/j.patcog.2020.107539
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improve the reconstruction results. Jiang et al. [13] proposed a

local patch-based model using neighbor embedding (NE) scheme

to restore more facial details. Li et al. [14] introduced the sparse

prior, which is then adopted to guide the reconstruction proce-

dure. Jiang et al. [ 15 , 16 ] added the locality-constrained regulariza-

tion and then obtained state-of-the-art hallucination results. Later,

the similar idea is further introduced into quaternion space to hal-

lucinate color faces [17] . Two robust locality-constrained represen-

tation models are presented by Liu et al. [ 18 , 19 ] to acquire the tar-

get HR faces and eliminate noise simultaneously. Shi et al. [ 20 , 21 ]

learned the reconstruction coefficients in the kernel space and syn-

thesized the HR image patches in the spatial domain. By exploiting

the subdivided contextual sub-patches, Chen et al. [22] proposed a

joint learning framework for face super-resolution. 

Recently, deep learning-based models have demonstrated re-

markable performance in image super-resolution applications.

Dong et al. [23] did the pioneer work to introduce the con-

volutional neural network into image super-resolution (SRCNN)

task. Cao et al. [24] resorted to deep reinforcement learning and

then proposed an attention-aware face super-resolution frame-

work. Motived by deep CNN denoiser, Jiang et al. [25] presented

a two-step face hallucination method. Yu et al. [26] developed

an attribute-embedded upsampling network to reduce the ambi-

guity in face image super-resolution. These aforementioned deep

based approaches does not take the highly structured facial prior

into consideration and may be failed in face super-resolution with

noise. 

In previous local patch-based approaches, the core procedure

can be summarized into two aspects: firstly, the LR input patch is

coded as a weighted (linear or nonlinear) representation over the

same position LR training patches; the desired HR patch is then

rendered by integrating the corresponding HR training patches

with the same reconstruction weights. The basic assumption is that

the latent embedding geometry between the target HR patch and

its LR counterpart is consistent in respective image space. How-

ever, this manifold assumption will not be true when the acquired

LR face images are severely degraded (e.g., noisy, blurred). Fur-

thermore, previous methods stacked the representation error into

a vector and characterized them in the pixel level, neglecting the

structural characteristic of the error image. 

To tackle above issues, we present a multilayer locality-

constrained matrix regression (MLCMR) framework in this work to

capture the intrinsic structural characteristic of the representation

error and keep the geometrical consistency between LR and HR

manifolds simultaneously. In brief, the main contributions of our

method are highlighted in the following: 

(1) We design an adaptive neighborhood selection scheme,

which aims at adaptively exploiting the intrinsic geometry

(similarity) of the target HR manifold to regularize the more

accurate reconstruction coefficients learning in the LR mani-

fold. 

(2) Distinguishing from existing methods imposing pixel level

constraint (e.g., l 1 or l 2 -norm) on the representation error,

MLCMR applies the image level regularization (i.e., nuclear

norm) scheme to reveal the intrinsic structure of the error,

to achieve more robust results. 

(3) MLCMR iteratively updates the LR training images to simul-

taneously learn the representation of the LR input patch and

preserve the manifold structure of the primitive HR space,

with the goal of achieving the super-resolution of the de-

sired HR patch in a much more consistent space. 

(4) To better evaluate the efficiency of our MLCMR approach,

besides comparable results on controlled face images, we

also conduct experiments and give some in-depth analysis
on real-world faces. t  
This paper is a further extension of conference version [27] .

n this extension, we provide more experimental comparisons

nd more deep-going analysis. The rest of this paper is orga-

ized as follows. Several related approaches are briefly reviewed

n Section 2 . In Section 3 , we detail our multilayer locality-

onstrained matrix regression framework. Furthermore, the com-

utational complexity and convergence analysis of the MLCMR

ethod are also provided. Experiments performed on controlled

ace images and real-world face images are shown in Section 4 .

ection 5 shows the conclusion and future work. 

. Related work 

Before formulating our proposed approach, in this part, we

ill first briefly introduce some related position-patch based face

uper-resolution approaches. 

Denote by Y L , A L = { A L 
1 , A L 

2 , …, A L 
M } and A H = { A H 

1 , A H 
2 , …,

 H 
M } the query LR image, LR and corresponding HR training sets,

espectively, where M represents the scale of the training set. For

ach LR input, its overlapped patches located at position ( i,j ) are

epresented as { Y L ( i,j )|1 ≤ i ≤ R , 1 ≤ j ≤ C }. The same size over-

apped patches are also extracted from A L and A H , and denoted as

 A L 
m ( i,j )|1 ≤ i ≤ R , 1 ≤ j ≤ C } and { A H 

m ( i,j )|1 ≤ i ≤ R , 1 ≤ j ≤ C },

espectively, where R and C denote the patch numbers. Different

orks convert the query patch vector into a reconstruction weights

o hallucinate the target HR patch. 

.1. Least square estimation 

Considering the structure prior in human faces, Ma et al. [8] de-

igned a simple yet efficient least square model to collaboratively

epresent each query patch using all training images at the same

osition. The optimal representation weights affiliated to the input

 L ( i,j ) can be computed as 

 

∗( i , j ) = arg min 

x ( i , j ) 

∥∥∥∥Y L ( i , j ) −
M ∑ 

m =1 

A 

m 

L ( i , j ) x m 

( i , j ) 

∥∥∥∥
2 

2 

.t. 
M ∑ 

m =1 

x m 

( i , j ) = 1 . 

(1)

The analytical solution of above formula can be acquired by

eans of a Gram matrix. 

.2. Sparse representation 

On account of the nonunique of the least square estimation,

ung et al. [12] imposed sparse regularization on the solution vec-

or, proposed to code the input patch by adaptively selected the

ost relevant training patches. They propose to solve the follow-

ng l 1 -norm optimization problem: 

min 

x 
‖ 

x ( i , j ) ‖ 1 s.t. 

∥∥∥∥∥Y L ( i , j ) −
M ∑ 

m =1 

A 

m 

L ( i , j ) x m 

( i , j ) 

∥∥∥∥∥
2 

2 

≤ ε. (2)

Here, the l 1 -norm accumulates the absolute values of a vector.

ome convex optimization methods such as l 1 - ls [28] can be used

o solve Eq. (2) . It should be pointed out that the l 1 -norm con-

traint could stabilize the solution, as well as reveal the latent ge-

metry of the training examples. 

.3. Locality-constrained representation 

The sparse regularization method [12] emphasizes that spar-

ity of the representation weights is critical to represent the query

atch, while locality property of the reconstruction vector is ne-

lected, which is proved to be more useful than sparsity in cap-

uring the inherent manifold geometry. Inspired by the impressive



G. Gao, Y. Yu and J. Xie et al. / Pattern Recognition 110 (2021) 107539 3 

Fig. 1. (a) Recovered images; (b) input images; (c) error images; (d) recombined 

error images. 

Table 1 

Norm values of error image and recombined images. 

Types of norm l 1 -norm l 2 -norm nuclear norm 

E and F E and F E F 

Noise-free 171.81 2.48 15.61 16.80 

Gauss noise 1988.88 22.29 195.03 196.17 

Block noise 534.95 9.96 38.59 47.86 

Mixture noise 1939.81 21.69 181.44 186.09 
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erformance of the local coordinate coding scheme [29] , a locality-

onstrained representation [15] model was presented to maintain

he sparsity and locality of training images simultaneously. The for-

ulation of the problem can be given as follows: 

in 

x ( i , j ) 

∥∥∥∥Y L ( i , j ) −
M ∑ 

m =1 

A 

m 

L ( i , j ) x m 

( i , j ) 

∥∥∥∥
2 

2 

+ λ
M ∑ 

m =1 

[ d m 

( i , j ) x m 

( i , j ) ] 
2 

.t. 
M ∑ 

m =1 

x m 

( i , j ) = 1 , 

(3) 

here parameter λ controls the contribution of locality and the

econstruction error. Each d m 

( i,j ) describes the similarity between

uery Y L ( i,j ) and the m -th atom A L 
m ( i,j ). By resorting to the regu-

arized least-squares estimator, one can easily gain the analytical

olution of problem (3) . 

. Multilayer locality-constrained matrix regression framework 

.1. Main motivation 

All above methods denoted the input patch as a column vector,

nd then usually imposed the l 2 or l 1 norm (pixel level) constraint

n the representation error, thus neglected the structural charac-

eristic (image level) of the error. For better illustration, we give

n example in Fig. 1 . Images (b) denote the input images, while

mages (a) are reconstructed ones from (b). Images (c) depicts the

rror E between images (b) and (a). We have created the error F

rom the error E by re-ordering the pixel positions (i.e., derang-

ng the structural characteristics). The values of l 2, l 1 and nuclear

orms between errors (c) and (d) are exhibited in Table 1 . 

From this table, we can find that, while the error E and the er-

or F have always the same norm values in the cases of l 1 -norm

nd l 2 -norm, they exhibit different norm values in the case of nu-

lear norm, especially for images with block and mixture noises.
s we all know, the l 2 and l 1 norms are pixel based values, and

hey cannot reveal the structural characteristic of the error. This

xample shows that the nuclear norm of error could depict struc-

ural characteristic more effectually than l 2 or l 1 norm. Thus, it is

easible for us to impose nuclear norm regularization on the re-

onstruction errors. 

.2. Locality-constrained matrix regression 

We represent all the image patches in two-dimensional form

n this part. Denote by Y L ( i,j ) ∈� 

p × q and A L 
m ( i,j ) ∈� 

p × q the ob-

erved LR image patches and collected training image patches, re-

pectively, where the size of the patch is denoted as p and q . We

eave out the sign ( i,j ) in the next part for simplicity. As in [15] , the

ocal manifold constraint is also added to acquire more meaningful

epresentation weights. We formulate the problem by 

in 

x 
‖ 

A L (x ) − Y L ‖ ∗ + α‖ 

d � x ‖ 

2 
2 , (4) 

here A L ( x ) = x 1 A L 
1 + x 2 A L 

2 + …+ x M 

A L 
M , x = [ x 1 ,…, x M 

] ∈� 

M × 1 ,

| ·|| ∗ denotes the nuclear norm (the sum of the singular values of a

ariable), α is a parameter to control the contribution of the local-

ty manifold constraint, d is an M -dimensional vector used to de-

cribe the similarity between Y L and each training patch A L 
m , and

represents point-wise vector product. As mentioned above, we

efine d as follows: 

 m 

= ‖ 

Y L − A 

m 

L ‖ ∗, 1 ≤ m ≤ M. (5) 

Model (4) can be directly used to calculate the desired repre-

entation weights. Thus, the basic assumption is that the geometry

tructure between HR manifold and the LR manifold are similar.

ue to the noisy, blurry degradations in real-world application sce-

arios and the one-to-many correspondence between the LR query

atch and corresponding HR one, this hypothesis will not be held

nymore. To this end, we propose to learn the representation of

he LR input and meanwhile preserve the geometry structure of

riginal HR manifold. 

Particularly, from the perspective of graph learning theory, with

egard to any two patches from the original HR manifold, if their

ocal distance is small, it is more likely that they may exhibit

he close representation weights. Next, we will utilize the intrinsic

eometry G from the HR manifold to induce the representations

earning in the observed LR patch manifold. 

At first, for each target HR patch Y H , we should obtain its neigh-

or structure in the original HR manifold. The most commonly

sed K nearest-neighbor search strategy is generally applied to

etermine the fixed neighborhoods. Nevertheless, it is usually in-

ractable to predefine the appropriate parameter K in practical ap-

lication scenarios. It is also unreasonable to assign the same K

o represent various face structures. To avoid the difficulty to con-

uct parameter selection and adaptively choose similar patches for

econstruction, we introduce a parameter-free adaptive neighbor-

ood selection strategy as follows. Denote by N ( Y H ) the set of near-

st neighbors of Y H , then we define N ( Y H ) as 

( Y H ) = 

{ 

A 

b 
H | i f d( Y H , A 

b 
H ) ≤

1 

M 

M ∑ 

j=1 

d( Y H , A 

j 
H 
) , b = 1 , . . . , M 

} 

, (6) 

here d( Y H , A 

j 
H 
) denotes the distance [defined in Eq. (5) ] between

 H and A 

j 
H 

, and ( 1 /M ) 
∑ M 

j=1 d( Y H , A 

j 
H 
) is actually the mean of all

( Y H , A 

j 
H 
) ( j = 1,…, M ). For better illustration, we draw the distri-

utions of d and the number of neighbors [calculated by Eq. (6) ]

or different patches in Fig. 2 , from which we can observe that for

ach target HR patch, our strategy could adaptively select similar

atches for more accurate reconstruction. 
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Fig. 2. The distributions of (a) the distance d and (b) the number of neighbors. 
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With the above adaptive neighborhood selection strategy, the

penalty weighting matrix P = ( p ij ) K ×K is defined as follows ( K is

the number of neighbors in N ( Y H )): 

p i j = exp 

(
−
∥∥A 

i 
H − A 

j 
H 

∥∥2 

2 
/ σ1 σ2 

)
, A 

i 
H , A 

j 
H 

∈ N( Y H ) . (7)

Here, σ1 = ( 1 /K ) 
∑ K 

l=1 ‖ A 

i 
H 

− A 

l 
H 
‖ 2 

2 
and σ2 =

( 1 /K ) 
∑ K 

l=1 ‖ A 

j 
H 

− A 

l 
H 
‖ 2 

2 
( l = 1,…, K ). In our setting of sym-

metric weighting matrix P , a heavy penalty will be induced if the

weights of A 

i 
H 

and A 

j 
H 

are very different. Therefore, minimizing it

aims to encourage that if A 

i 
H 

and A 

j 
H 

are close to each other in

the HR patch manifold, then so should be x i and x j . With simple

formulation, we have: 

1 

2 

K ∑ 

i, j=1 

(
x i − x j 

)2 
P i, j = x T ( D − P ) x = x T Lx, (8)

where diagonal matrix D has the entries of being row sums of

P , D ii = 

∑ 

j p i j (or column because P is symmetric), and variable

L = D – P denotes the Laplacian matrix [10] . 

Without loss of generality, we also use A L to denote the adap-

tively selected neighbor patches set of Y L (It should be noted that

different Y L have different K ). So far, our locality-constrained ma-

trix regression (LCMR) model can be formulated as 

min 

x 
‖ 

A L (x ) − Y L ‖ ∗ + α‖ 

d � x ‖ 

2 
2 + βx T Lx. (9)

Here, parameter β is used to balance the contributions of the

compatible neighbors. 

3.3. Optimization 

The minimization problem (9) could be rewritten as 

min 

x 
‖ 

E ‖ ∗ + α‖ 

d � x ‖ 

2 
2 + βx T Lx 

s.t. A L (x ) − Y L = E 
(10)

The alternating direction method of multipliers (ADMM)

method [30–33] can be exploited to solve the above formulation.

To solve problem (10) , let us define the next augmented Lagrange

function: 

L μ( x, E ) = ‖ 

E ‖ ∗ + α‖ 

d � x ‖ 

2 
2 + βx T Lx 

+ tr 
(
Z T ( A L (x ) − Y L − E ) 

)
+ 

μ

2 

‖ 

A L (x ) − Y L − E ‖ 

2 
F , (11)

where μ> 0 is a penalty variable, α and β are above mentioned

regularization parameters, tr ( •) is the trace operator, while Z is the
agrange multiplier. Following a series of simple algebraic deriva-

ion, we can rewrite optimization problem (11) as 

 μ( x, E ) = ‖ 

E ‖ ∗ + α‖ 

d � x ‖ 

2 
2 + βx T Lx 

+ 

μ

2 

∥∥∥A L (x ) − Y L − E + 

1 

μ
Z 

∥∥∥2 

F 

− 1 

2 μ
‖ 

Z ‖ 

2 
2 . (12)

The above problem is unconstrained. So we can optimize the

ariable one by one by fixing other variables until pre-set terminal

onditions are reached. 

Updating x 

Given E together with other variables, our optimization problem

an be rewritten as 

 μ( x ) = 

2 α

μ
‖ 

d � x ‖ 

2 
2 + 

2 β

μ
x T Lx + 

∥∥∥Y L + E − 1 

μ
Z − A L (x ) 

∥∥∥2 

F 

. (13)

Inspired by the description in [8] , we can acquire the closed

olution of the above regularized least square problem via 

 

k +1 = 

(
G + τD 

2 + δL 
)\ ones (K, 1) , (14)

Where k denotes the iteration index, τ = 2 α/ μ, δ = 2 β/ μ, col-

mn vector ones ( K ,1) has a size of K × 1 with the entries of all

nes, diagonal matrix D has a size of K × K with the entries of

 mm 

= d m 

, the symbol “\ ” represents the left matrix division, and

he covariance matrix G = C T C together with 

 = V ec 

(
Y L + E − 1 

μ
Z 

)
ones (M, 1) T − H. (15)

Here, matrix H = [ Vec ( A L 
1 ), …, Vec ( A L 

K )], operator Vec ( ·) trans-

orms a two-dimensional matrix into a column vector. Then the

nalytical solution of x can be obtained by rescaling it to satisfy
 K 
m =1 x m 

= 1 . 

Updating E 

Given x together with other variables, we can rewrite our opti-

ization problem as 

 

k +1 = arg min 

E 

(
1 

μ
‖ 

E ‖ ∗ + 

1 

2 

∥∥∥E −
(

A L (x ) − Y L + 

1 

μ
Z 

)∥∥∥2 

F 

)
. 

(16)

Its optimal solution can be acquired by [34] : 

 

k +1 = U T 1 
μ

[ S ] V , (17)

here ( U, S, V T ) = s v d( A L (x ) − Y L + 

1 
μ Z ) , operation svd denotes the

ingular value decomposition. 
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Algorithm 1 

ADMM algorithm to solve problem (10) . 

Input: Training patch matrices A L 
1 ,…, A L 

M ∈ R p ×q and observed patch 

matrix Y L ∈ R p ×q , parameters α and β , and the terminal condition 

parameter ε. 

Initialization: x = 0, E = Z = 0, ε = 10 −6 

1: Step1: Fix others and update x according to (14) ; 

2: Step2: Fix others and update E according to (17) ; 

3: Update multiplier Z according to (19) ; 

4: Check for convergence: 

‖ A L (x ) − Y L − E ‖ ∞ > ε

Go to step 1; 

5. Output: Optimal representation weights x k + 1 

T
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Fig. 3. Flow diagram of MLCMR method. (i) Calculating the desired representation 

weights x ; (ii) Preserving the HR manifold geometry G by penalty weighting matrix; 

(iii) Updating the LR and HR training sets. 

Algorithm 2 

Robust face super-resolution via MLCMR. 

Input: HR training set A H = { A H 
1 ,…, A H 

M }, corresponding LR one 

A L = { A L 
1 ,…, A L 

M }, input LR image Y L , layer number B . 

1: The LR input and each training face are portioned into N overlapped 

blocks; 

2: For each layer: b = 0 to B ; 

3: For each input patch: 

a) Calculate the similarity d ( b ) and the penalty weighting matrix P ( b ) 

for the LR input image patch matrix by formulate (5) and (7) 

respectively; 

b) Calculate the optimal representation weights x ( b ) of the LR input 

patch over the same position LR dictionary A (b) 
L 

by formulation (20) 

using Algorithm 1 ; 

c) Construct the intermediate HR patch Y H by Y (b + 1) 
H 

= A (b) 
H 

( x (b) ) and 

as an input of the next layer; 

d) Update the next layer dictionaries A (b+1) 
L 

using leave-one-out 

scheme. 

4: End for 

5: End for b 

6: Integrate all the super-resolved HR patch matrices to form the desired 

HR image Y H : 

Output: The super-resolved HR face image Y H . 

c  
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The singular value thresholding operator T ( •) is denoted as 

 1 
μ

[ S ] = diag 

({ 

max 

(
0 , s j, j −

1 

μ

)} 

1 ≤ j≤r 

)
, (18) 

ere r count the rank of S. 

Finally, the Lagrange multiplier Z can be updated by 

 

k +1 = Z k + μ
(
A L ( x 

k +1 ) − Y L − E k +1 
)
, (19) 

here μ> 0 is the penalty variable. 

The detailed procedure to solve problem (10) via ADMM is

isted in Algorithm 1 . 

.4. Face super-resolution via LCMR 

Regard to the super-resolution problem, the training sets consist

f HR and corresponding LR pairs. Let A H = { A H 
1 , A H 

2 ,…, A H 
M } the

R training face images and A L = { A L 
1 , A L 

2 ,…, A L 
M } the LR coun-

erparts, the task of face super-resolution is to recover the desired

R candidate Y H from observed LR query Y L. 

As in [15] , we first utilize the same dividing strategy to split

he query LR input and each face pair in the training set into

verlapped patches, which are represented as Y L ( i,j ), A L 
m ( i,j ) and

 H 
m ( i,j ), respectively. With regard to each patch Y L ( i,j ) in LR in-

ut image, we first calculate its penalty weighting matrix from the

ame position training HR patches by means of the desired Y H ( i,j ),

ith the aim of exploiting the geometry structure of the target

R manifold to guide the representation weights learning in the

R manifold. Secondly, by using LCMR, Y L ( i,j ) is approximated as a

eighted combination over the same position adaptively selected

eighbor LR training patches A L 
m ( i,j ) ( m = 1,…, K ). Then, by em-

loying the same representation weights on the related HR train-

ng patch matrices, we would gain the target HR patch Y H ( i,j ). Fi-

ally, we can acquire the desired HR face via integrating all the

arget HR patches and averaging overlapped pixel values according

o their corresponding positions. 

.5. Constructing MLCMR for efficient face super-resolution 

The representation weights and the desired HR patch are ob-

ained separately in the aforementioned super-resolution scheme.

t only takes into account the LR manifold while neglecting the use

f the geometry information hidden in the original HR manifold,

hich is unaffected by the image degradation process [4] . Inspired

y multilayer [13] and deep learning [ 24 , 35 ] solutions, we also

ropose to construct a multilayer locality-constrained matrix re-

ression framework to update the representation weights and the

R training set step by step. The flowchart of our proposed method

s drawn in Fig. 3 , where the reconstruction weights and the LR

raining set are updated alternately. 

Weights updating : Without loss of generality, the number of

ayers is defined as B . Therefore, for the b -th layer, the optimal re-
onstruction coefficients of input patch at position ( i,j ) can be ob-

ained using the following formulation: 

 

(b) = arg min 

x (b) 

∥∥A 

(b) 
L 

( x (b) ) − Y (b) 
H 

∥∥
∗

+ α
∥∥d (b) 

� x (b) 
∥∥2 

2 
+ β( x (b) ) T L (b) x (b) . 

(20) 

It should be noted that Y H 
(0) = Y L , A L 

(0) = A L . After that,

he desired HR patch can be updated by Y (b + 1) 
H 

= A 

(b) 
H 

( x (b) ) ,

here A 

(b) 
H 

( x (b) ) = A 

1(b) 
H 

( i , j ) x (b) 
1 

(i, j) + A 

2(b) 
H 

( i , j ) x (b) 
2 

(i, j) + . . . +
 

K(b) 
H 

( i , j ) x (b) 
K 

(i, j) . 

Training sets updating : The LR training set in the next layer is

pdated using the method in Section 3.3 by a so-called leave-one-

ut scheme: one image from the LR training set is selected as input

n turn, while the remaining is regarded as the dictionary. Then,

he LR training set is updated by traversing the whole database.

n this way, the inconsistency between the HR and LR manifolds

s gradually reduced, thus the HR and LR weight pairs get more

oupled as well. 

By alternately updating the representation weights and LR dic-

ionary, we can construct multilayer LCMR to boost the super-

esolution performance. Algorithm 2 details the entire face super-

esolution algorithm. 
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Table 2 

Ablation study of each module in the proposed method. 

Methods Metric MLCMR_NL MLCMR_NC MLCMR_NN MLCMR 

Noise- 

free 

PSNR 32.25 32.58 32.92 33.09 

SSIM 0.9035 0.9164 0.9212 0.9291 

Gauss 

noise 

PSNR 26.28 26.72 26.90 27.01 

SSIM 0.7846 0.7956 0.8084 0.8191 

Block 

noise 

PSNR 24.34 25.07 25.27 25.78 

SSIM 0.8195 0.8298 0.8188 0.8484 

Mixture 

noise 

PSNR 23.14 23.88 24.14 24.69 

SSIM 0.7513 0.7635 0.7736 0.7852 

Fig. 4. Convergence analysis of Algorithm 1 . 
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3.6. Complexity and convergence analysis 

We desire to perform the complexity analysis on the proposed

MLCMR method here. Because the dictionary updating process can

be conducted offline, thus, we only analyze the operational cost of

the online super-resolution procedure in our proposed approach.

The major time complexity of Algorithm 1 is taken on Step 1 and

Step 2, which involves three parts: (i) adaptive neighborhood selec-

tion; (ii) representation weights calculating, and (iii) the SVD oper-

ation. It can be found that there are totally four primary elements

influencing the time cost in parts (i), (ii) and (iii): the training size

M , the patch numbers N in one image, the number of the neigh-

bors K , and the dimension d 2 of one patch. 

Inspired by [13] , the adaptive neighborhood selection step costs

O ( Kd 2 M ) and the representation weights calculating step costs

O ( d 2 K 

3 ). Thus, Step 1 in Algorithm 1 costs O ( d 2 K 

3 + Kd 2 M ). For

a matrix in � 

d ×d , its exact SVD costs O ( d 3 ). Therefore, for each

patch, it costs O ( d 3 + d 2 K 

3 + Kd 2 M ) in Algorithm 1 . Finally, by con-

sidering the maximum iteration number maxIter , layer number B

and patch number N , the total computational complexity of ML-

CMR framework is about O ( maxIter ( d 3 + d 2 K 

3 + Kd 2 M ) NB ). 

For the convex problem, the convergence properties of the

ADMM can be guaranteed. One can refer to [36] for more details.

Since it is difficult to guarantee that matrix L is positive definite,

our formulation may non-convex. In this case, it would be difficult

to guarantee the convergence of Algorithm 1 in theory. However,

throughout our tests, we observe that Algorithm 1 can converge

asymptotically. Fig. 4 shows a convergence example of our method,

where the objective value tends to be stable after nearly 20 steps. 

4. Experimental results and discussions 

We compare our MLCMR method with some state-of-the-

art face super-resolution approaches in this part: sparse rep-

resentation (SR) model [12] , locality-constrained representation
LCR) model [15] , locality-constrained iterative neighbor embed-

ing (LINE) model [13] , locality-constrained bi-layer representation

LCBR) model [18] . Furthermore, deep reinforcement learning (DRL)

odel [24] and deep CNN (DCNN) model [25] are also used for

omparison. 

To evaluate the effectiveness and efficiency of our proposed al-

orithm, extensive experiments are performed on controlled face

atabases (the FEI database [37] ) and real-world face databases

the CMU + MIT face database [38] ). Besides the qualitative compar-

sons of each method, the values of Structural SIMilarity (SSIM) and

eak signal-to-noise ratio (PSNR) [39] are also utilized to quantita-

ively investigate the qualities of super-resolved faces. 

.1. Dataset description 

We first conduct simulation experiments on the FEI face

atabase. Each face is manually aligned based on the positions of

hree points: center of the mouth, centers of the right and left eye-

alls ( Fig. 5 shows some example images). For the FEI database, it

athers 400 frontal samples from 200 persons. Thus, each person

as two samples: one with a neutral expression while the other

s smiling. All the face regions are cropped and normalized to the

ize of 120 × 100. We randomly pick 40 face samples for testing

n this paper, and the other 250 face samples for training. The HR

aces are first smoothed (with window size 4 × 4) and then re-

ized by a down-sample factor of 4 to form their LR counterparts,

ho have size of 30 × 25. 

.2. Ablation study 

In this part, we study the effects of each module in our method.

ach test image has four degradations: without noise; with Gauss,

lock or mixture noise (see Section 4.3 for details). Compared to

LCMR, 

MLCMR_NL removes locality constraint, MLCMR_NC removes

onsistency constraint and MLCMR_NN replaces nuclear norm with

he l 2 norm. Table 2 presents the average PSNR and SSIM re-

ults. One can observe that locality constraint is important since

LCMR outperforms MLCMR_NL. Moreover, MLCMR has better

erformance than MLCMR_NC, indicating that the adaptively se-

ected target HR manifold indeed compensates useful information

n the proposed method. Further, MLCMR obtains better perfor-

ance than MLCMR_NN, especially in face of block and mixture

oise, which reveals that the nuclear norm regularization is also

seful to capture the inherent structure of the reconstruction er-

or. 

.3. Result comparisons 

For fair evaluations, we tune the parameters in comparative ap-

roaches to gain their possible best performance. The size of the

R patch is 12 × 12 pixels, and there are 4 columns (or rows) be-

ween adjacent patches. Thus, the size of the related LR patch is
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Fig. 5. Some face images from FEI face database. 

Fig. 6. Comparisons of different face super-resolution approaches in noise-free case. The first to the ninth columns are successively the query LR images, the results of SR 

method, LCR method, LINE method, DRL method, DCNN method, LCBR method, the proposed MLCMR, and the referenced HR images. 
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 × 3 pixels with one column (or row) overlapped with its ad-

acencies. For the SR method, when seeking an optimal solution,

e set the error tolerance as 0.001. For the LCR method, for best

erformance, the suitable balance variable is set to 0.04. For the

INE method, the suitable locality parameter, the iteration number,

nd layer number are set to 1e-5, 4 and 3, respectively. For the

RL method, 320 face samples are used as training set, 40 samples

sed as validation set and 40 samples used as the testing set. For

he RLCBR method, the corresponding parameters are set to 1 and
.04. s  
1) Experiments without noise: Several example super-resolved

aces by compared approaches are shown in Fig. 6 . From left to

ight, the first column denotes the acquired LR images, the sec-

nd to the seventh columns are the super-resolved HR images by

ix comparable methods, while the last column is the ground truth

eferences. Some “ghosting” effects are obtained by SR method on

ocations around margins of the mouth and face contours. LCR and

INE methods have similar subjective visual performance. Multi-

ayer based methods (DRL, RLCBR and our MLCMR) yield better

ubjective performance than previous single-layer based ones. Es-



8 G. Gao, Y. Yu and J. Xie et al. / Pattern Recognition 110 (2021) 107539 

Fig. 7. Comparisons of different face super-resolution approaches for LR faces corrupted by the Gaussian noise. The first to the ninth columns are successively the query LR 

images, the results of SR method, LCR method, LINE method, DRL method, DCNN method, LCBR method, the proposed MLCMR, and the referenced HR images. 

Table 3 

The objective compared results of respective approaches with various noises on the FEI database. 

Methods Metric SR LCR LINE DRL DCNN LCBR MLCMR 

Noise- 

free 

PSNR 31.89 32.38 32.61 32.67 32.70 32.78 33.09 

SSIM 0.9087 0.9114 0.9158 0.9235 0.9176 0.9186 0.9291 

Gauss 

noise 

PSNR 24.80 26.49 26.64 25.01 26.70 26.79 27.01 

SSIM 0.6414 0.7788 0.8036 0.7481 0.8055 0.8065 0.8191 

Block 

noise 

PSNR 22.98 24.43 24.89 22.44 24.90 24.92 25.78 

SSIM 0.7985 0.8234 0.8073 0.7327 0.8210 0.8310 0.8494 

Mixture 

noise 

PSNR 21.14 23.22 23.66 21.62 23.70 23.77 24.69 

SSIM 0.5775 0.7431 0.7563 0.6856 0.7640 0.7739 0.7852 
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pecially, our proposed MLCMR method can obtain more reasonable

performance and have more similar visual impressions with the

target HR images. Furthermore, the average objective compared re-

sults of all the 40 testing images are tabulated in Table 3 . Our ML-

CMR method can obtain the best quantitative results since it incor-

porates the matrix regression and takes the manifold structure of

the desired HR patch space into account. 

2) Robust to noise: Previous experiments simply assume that

the acquired LR faces are noiseless. However, due to the compli-

cated imaging environment, the influence of noise inevitably can-

not be ignored in the observed LR faces. Thus, we verify the ro-

bustness of MLCMR on noise situations in this part. Experiments
re conducted on three cases: test images are corrupted by zero-

ean Gaussian noise with deviations 0.05; test images are oc-

luded by a square “baboon” image block in randomly located po-

ition with an occlusion level of 10%; test images are corrupted by

 mixture noises (gauss noise and block occlusion). For a detailed

omparison of different methods, Fig. 7 –9 show several super-

esolved face images to depict the visual image quality. Table 3 also

abulates the average evaluation measures obtained by respective

ethods. We can see that in noisy situations, the qualities of all

hese super-resolved images are reduced drastically. The reason

ay be that in the noise scenario, SR seeks the most similar train-

ng patches other than alleviating the influence of noise. Thus, the
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Fig. 8. Comparisons of different approaches for LR faces corrupted by block occlusion. The first to the ninth columns are successively the query LR images, the results of SR 

method, LCR method, LINE method, DRL method, DCNN method, LCBR method, the proposed MLCMR, and the referenced HR images. 
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R based method does not achieve satisfying performance. The LCR

nd LINE methods obtain more reliable results with less ghost-

ng effect than the SR method. This is because, in LCR and LINE

ethods, the manifold structure is incorporated, which can en-

ance the discriminative ability of representation weights. More-

ver, the deep based DRL and DCNN do not take the highly struc-

ured noise prior into consideration, which has been verified to

e crucial in face super-resolution tasks. The RLCBR method can

btain smoother results with less noise effect by improving the

ocality-constrained model with a weight vector. Compared with

ther methods, by applying the nuclear norm to regularize the re-

onstruction error and iteratively using the manifold structure of

he desired HR space to induce the reconstruction weights learn-

ng in the LR space, the desired faces generated by our MLCMR

an reveal more feature details around the mouth, eyes and face

ontour, together with best visual quality and highest quantified

esults. 

.4. Compared results on real-world images 

In aforementioned experiments, the input smoothed and down-

ampled LR testing face images come from its original HR counter-

arts. However, due to the difficulties of fitting the image degrada-

ion process in real-world applications, the real spatial feature cor-
elation between the degraded LR image and the HR one cannot

e simply described by only the input LR inputs. Therefore, sim-

lar experiments are performed on the real-world CMU + MIT face

ataset [38] to further verify the efficiency of our method. 

All the testing samples are manually extracted from the

MU + MIT face database and aligned to the training images in

he FEI database in accordance with the center points of the two

yes. Then, by simply using Bicubic interpolation, these aligned im-

ges are resized to have size 30 × 25 (to have the same size as

he training samples). Some extracted LR samples are exhibited

n Fig. 10 . Unlike those down-sampled LR images by the known

egradation process, due to the complexity imaging conditions,

hese images in this experiment natively have low-resolution.

ig. 11 lists some reconstructed HR images by different meth-

ds in face of four degradation modes (i.e., without noise; with

auss, block or mixture noise). In the noise-free case, all meth-

ds obtain similar performance. However, in noisy cases, we can

bserve that our method yields the best performance with less

hosting effect around the mouth, eyes and face contour. To bet-

er evaluate the efficiency of our method, we treat the super-

esolved faces obtained by our method in the noise-free case as the

ground truth”, and show the referenced quantitative compared

esults in Table 4 . 
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Fig. 9. Comparisons of different approaches for LR faces corrupted by mixture noise. The first to the ninth columns are successively the query LR images, the results of SR 

method, LCR method, LINE method, DRL method, DCNN method, LCBR method, the proposed MLCMR, and the referenced HR images. 

Table 4 

The objective compared results of respective approaches with various noises on the CMU + MIT 

database. 

Methods Metric SR LCR LINE DRL DCNN LCBR MLCMR 

Gauss 

noise 

PSNR 20.58 24.43 25.19 23.93 25.30 25.36 25.60 

SSIM 0.5236 0.7325 0.8048 0.7253 0.8104 0.8203 0.8231 

Block 

noise 

PSNR 22.54 23.33 23.64 22.28 23.75 23.81 24.36 

SSIM 0.7914 0.8403 0.8592 0.7606 0.8640 0.8684 0.8786 

Mixture 

noise 

PSNR 18.90 21.07 21.43 20.86 21.50 21.57 22.28 

SSIM 0.4660 0.6584 0.7378 0.6149 0.7421 0.7432 0.7579 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5. Parameter analysis 

We survey the effect of the locality parameter α, consistency

parameter β and layer number B in this part. 

1) The effect of the regularization parameters: The performance of

our method using different parameter settings is evaluated to

further test the effect of parameters. In these tests, we just ad-

just one parameter while given the other one. In this experi-

ment, we use the leave-one-out strategy: one image from the

training set is selected as input in turn, and the rest of the

training set is treated as the dictionary. The LR input is oc-

cluded by a square “baboon” image block in randomly located

position with an occlusion level of 10%. Fig. 12 plots the aver-
age PSNR and SSIM results. From the results, one can find that

as α grows, the performance of MLCMR first increases and next

decreases. In our experiments, we set α around 10. When the

values of consistency parameter β vary from 0.5 to 1, our pro-

posed method can always obtain stable performance. 

2) The effect of layer number: Fig. 13 lists several super-resolved re-

sults of our method using different layer numbers. For compar-

ison, the result of Bicubic Interpolation (BI) is used as the base-

line. L1 and L2 respectively denote the single-layer MLCMR and

the two-layer MLCMR, and so on. From the visual results, we

can observe that the results of BI have blurred details while our

model can recover more facial details with more layer numbers.

We also tabulate the average quantitative values versus differ-
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Fig. 10. Some extracted LR images on the real-world CMU + MIT face dataset. For each example, the extracted and aligned LR input is at left, and the super-resolved result 

of our method is at right. 

Table 5 

The average quantitative values with different layer numbers. 

Layer number BI L1 L2 L3 L4 

PSNR 27.42 32.51 32.97 33.09 33.10 

SSIM 0.8411 0.9210 0.9254 0.9291 0.9300 
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ent layer numbers in Table 5 for comparison. The superiority of

our MLCMR approach becomes distinct when the layer number

increases. Nevertheless, more layer numbers need more compu-

tational cost. We set layer number as 3 in the following testing.

.6. Computational time 

In this section, we evaluate the computational time of respec-

ive approaches. The experiments are conducted with the following

onfigurations: the CPU is Intel Core i7 -6700 and the RAM is 16

Bytes. For simplicity, we only perform the comparisons on one

ace sample from the FEI database. The computational cost of re-

pective approaches is tabulated in Table 6 . We can observe that

he DRL method has the least computational consumption once the

etwork is pre-trained. Due to the iterative updating scheme, LINE

nd RLCBR methods require similar computational time. The LCR

ethod is faster than other position-patch based methods since

t only requires a few matrix multiplications and additions steps.
n account of the iterative strategy in representation learning, our

roposed MLCMR requires much more time in comparison with

ther approaches. 

.7. Recognition tests 

We investigate the recognition performance using the super-

esolved HR faces. The extended Yale B face dataset [40] , which

ontains 38 humans, is used here. The 14 images of a subject with

ormal lighting conditions are selected. With regard to each sub-

ect, we pick 7 samples for training and the rest without or with

oise (i.e., Gauss, block or mixture noise) are used for testing.

ach HR face has size of 96 × 84, and its corresponding LR one

s 24 × 21. In this part, each query LR face is super-resolved by

he leave-one-out strategy, and those samples from the testing sub-

ect are excluded from the training faces. For simplicity, the ma-

rix regression-based classifier [30] is exploited to recognize super-

esolved faces. 

Table 7 tabulates the recognition rates (RAs) of different super-

esolution approaches in four degradation modes. From Table 7 , we

an find that the super-resolved faces by our MLCMR method can

chieve higher RAs than other methods in block and mixture noise

ases. Our proposed MLCMR can retain more feature details around

he mouth, eyes and face contour via using the nuclear norm reg-

larization and iteratively applying the manifold structure of the

esired HR space to regularize weights learning in the LR space. 
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Fig. 11. Comparisons of different approaches for LR images extracted from real-world CMU + MIT face dataset. The first to the eighth columns are successively the query LR 

images, the results of SR method, LCR method, LINE method, DRL method, DCNN method, LCBR method, the proposed MLCMR. 

Table 6 

Comparison of computational time (seconds) on the FEI face database. 

Methods SR LCR LINE DRL DCNN LCBR MLCMR 

Time 3.2548 1.2331 2.4652 0.3387 1.1543 2.5875 6.5482 

Table 7 

Recognition rates of respective approaches on the Extended Yale B face database. 

Methods SR LCR LINE DRL DCNN LCBR MLCMR 

Noise-free 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Gauss noise 0.88 0.95 0.96 0.90 0.97 0.97 0.98 

Block noise 0.85 0.92 0.93 0.86 0.93 0.94 0.97 

Mixture noise 0.80 0.87 0.90 0.84 0.92 0.92 0.95 
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Fig. 12. The averaged PSNR and SSIM values of MLCMR utilizing different indexes of α (first row) and β (second row). 

Fig. 13. Face super-resolution with different layer numbers. The first to the seventh columns are successively the query LR inputs, the super-resolved results of BI’s, L1’s, 

L2’s, L3’s, L4’s and the referenced HR images. 
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. Conclusions and future work 

We design a novel noise robust face image super-resolution

odel called multilayer locality-constrained matrix regression

MLCMR) in this paper. MLCMR uses nuclear norm regularization

o capture the structural characteristic of the representation resid-

al. Also, MLCMR is proposed to apply an adaptive neighborhood
election scheme to find the HR counterpart that is compatible

ith its neighbors. Furthermore, our proposed MLCMR framework

teratively utilizes the manifold structure of the primordial HR

pace to guide the representation weights learning in the degraded

R space. Experiments on both controlled and the real-world faces

ave shown the effectiveness of our method. 
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In practical surveillance applications, the pose and misalign-

ment variations cannot be neglected. As for those seriously de-

graded LR images, the deep feature representation of them should

be well investigated. In addition, how to incorporate the facial

structure prior to deep models is also our future work. 
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