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Abstract
In real applications, the observed low-resolution face images usually have pose variations. Conventional learning-based

methods ignore these variations; thus, the hallucinated high-resolution faces are not reasonable for the following recog-

nition task. For recognition purpose, we prefer to obtain near-frontal faces. To this end, we propose a nuclear norm

regularized structural orthogonal Procrustes regression (N2SOPR) approach in this work to acquire pose-robust feature

representations for face hallucination with pose. The orthogonal Procrustes regression is used to seek an appropriate

transformation between two data matrixes. Additionally, the nuclear norm regularization is imposed on the representation

residual to preserve image structural property. We also impose a low-rank restraint on the combination weight to auto-

matically cluster each input into the same subspace with the training samples. Both hallucination and recognition

experiments conducted on common face databases have verified that our N2SOPR can obtain reasonable performance than

some related methods.

Keywords Face hallucination � Pose variations � Nuclear norm � Low-rank constraint

1 Introduction

In the past few decades, great achievements have been

made in the community of face recognition [1–16] with the

contributions of researchers. However, due to the limita-

tions of network bandwidth, hardware storage, long dis-

tance between the electric imaging system and the interest

object, the observed interested face regions usually have

low resolution (LR). Due to the low-quality property, the

discriminative details extracted from these LR face regions

are so limited that the following face recognition perfor-

mance is unsatisfactory [17]. To provide more facial details

for the subsequent recognition procedure, face hallucina-

tion technologies have been applied to forecast target high-

resolution (HR) faces from captured LR ones. In the past

several decades, learning-based approaches have attracted

extensive attention for its remarkable achievements in face

image super-resolution tasks.

Freeman et al. [18] firstly developed a learning-based

face hallucination approach, where the potential correlation

between HR and corresponding LR patches is formulated

by a Markov network. Wang et al. [19] utilized principal

component analysis (PCA) method to code the input as a

linear representation over the training images and then

reconstructed the desired HR version by applying the same

combination coefficients on their HR counterparts. Hu

et al. [20] then presented a kernel extension of the PCA-

based holistic model by taking into account the higher-

order image statistic information. Shi et al. [21] proposed a

two-phase face hallucination framework. They first
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produced a temporary HR version in patch-wise manner

and then integrated local sparsity, global consistency, and

pixel correlation to hallucinate the final desired HR face

image. In order to search a consistency subspace to max-

imize the relation between the PCA coefficients of LR

images and corresponding HR ones, canonical correlation

analysis (CCA) is utilized by Huang [22] and An [23]. Gao

et al. [24] designed an efficient face hallucination frame-

work, which estimates a mapping between the embedding

geometrics in each image spaces via sparse representation

[25–28].

These previous global face hallucination models loss

some fine individual details of the input face images

sometimes. To tackle this problem, local patch-based

strategies have been presented to render more facial details.

Chang et al. [29] assumed that the local geometric structure

of LR image patches is similar to that of HR ones and then

proposed a neighbor embedding (NE) scheme to pick the

nearest neighbors from the training set. After that,

numerous related works have been proposed, such as iter-

ative neighbor embedding [30] and coupled-layer neighbor

embedding [31]. Unlike those patch-based methods utiliz-

ing all related neighbors for hallucination, Yang et al. [32]

proposed to minimize the reconstruction error by using

sparse representation technique to automatically choose the

most relevant neighbors. Based on an observation that

human faces contain highly structured property, many

works incorporated the prior position information into

super-resolution reconstruction procedure. Ma et al. [33]

formulated the face super-resolution process as a con-

strained least square problem and presented a position-

patch-based method. One problem is that the solution of

the least square estimation may not be stable if the size of a

patch is smaller than that of the referenced set. To handle

this issue, Jung et al. [34] adopted sparse regularization

term to penalize the coefficients. After that, Wang et al.

[35] further designed a weighted adaptive sparse regular-

ization model to improve the performance. To make full

use of both sparsity and locality simultaneously, Jiang et al.

[36] proposed a locality-constrained representation model.

In consideration that close patches naturally have analog-

ical representations, Jiang et al. [37] presented a robust face

super-resolution method based on smooth sparse repre-

sentation. With the help of a group of training pairs, a

robust bilayer representation scheme is presented by Liu

et al. [38] to perform hallucination and denoising simul-

taneously. Recently, as a highly effective model, deep

learning has achieved remarkable achievements in various

visual applications [39–41]. For example, Dong et al. [39]

presented to train an end-to-end image super-resolution

model by using deep convolutional network.

These above methods have achieved satisfactory hallu-

cination results on the frontal view face images. However,

in real-world surveillance applications, the captured LR

face images usually have pose variations. When learning

the LR patch representations, the aforementioned algo-

rithms ignore the pose variations; thus, the learned repre-

sentations are sensitive to these variations. We prefer to

hallucinate near-frontal faces for the following recognition

procedure. To handle face hallucination with pose varia-

tions, we present a nuclear norm regularized structural

orthogonal Procrustes regression (N2SOPR) method.

Orthogonal Procrustes regression is applied to seek an

appropriate transformation between two data matrixes to

make the pose of one data adaptive to the other, and

imposes the structural constraint on the representation

residual to preserve image inherent property. Also, the

proposed method tries to cluster the input into the same

subspace with the training samples by low-rank constraint.

Locality constraint is also incorporated to enable the

recovery of local manifold from local patches. Experi-

mental results in terms of hallucination and recognition

have shown the efficiency of our method.

We organize the remainder of the paper as follows: In

Sect. 2, several relevant position-patch-based face super-

resolution approaches are simply introduced. In Sect. 3, we

detail our nuclear norm regularized matrix structural

orthogonal Procrustes regression-based method, including

the optimization details and complexity analysis. Experi-

ments and discussions are shown in Sect. 4. The conclusion

and future work are provided in Sect. 5.

2 Related work

In learning-based face hallucination methods, each input

image patch extracted from its global version is represented

by a given dictionary in the same position with the training

samples. Different schemes convert the input into a rep-

resentation vector to gain the desired HR patch. In this part,

we will briefly review three popular face hallucination

approaches related to our proposed one.

Denoting Am (m = 1, …, N) the training samples (N is

the number of the training images) and y the test image, the

input testing sample and each training sample are decom-

posed into some overlapping square patches and denoted as

{y(i, j)|1 B i B R, 1 B j B C}, {Am(i, j)|1 B i B R, 1 B

j B C}, respectively, where term (i, j) is the position index,

C and R represent the patch numbers in every column and

row.

2.1 Least square representation

An efficient yet simple least square representation model

[33] is presented to collaboratively code each input patch

as a linear representation over the same position patches
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extracted from all training samples. The optimal repre-

sentation vector associated with the acquired input y(i, j)

can be computed by:

x�ði; jÞ ¼ argmin
xði; jÞ

yði; jÞ �
XN

m¼1

Amði; jÞxmði; jÞ
�����

�����

2

2

s:t:
XN

m¼1

xmði; jÞ ¼ 1:

ð1Þ

By considering a Gram matrix, the analytical solution of

above least square problem can be obtained.

2.2 Sparse representation

One problem of Eq. (1) may be that the solution of such

least square estimation may not be stable. By imposing

sparse constraint on the combination vector, Jung et al. [34]

proposed to adaptively select the most relevant training

patches to represent input patch. It converts Eq. (2) to an

l1-norm minimization problem:

min
x

xði; jÞk k1 s:t: yði; jÞ �
XN

m¼1

Amði; jÞxmði; jÞ
�����

�����

2

2

� e:

ð2Þ

Here, l1-norm adds the absolute value of a vector. Many

convex optimization algorithms could be used to solve

Eq. (2), such as l1–ls [42]. It should be noted that the

learned representation can capture salient properties of the

training images due to the sparsity constraint.

2.3 Locality-constrained representation

Aforementioned sparse representation method [34]

neglects the locality characteristic of the representation

vector. In contrast, locality-constrained representation [36]

incorporates a manifold regularization into representation

vector to maintain the intrinsic geometry of training sam-

ples. The objective is defined as follows:

min
xði; jÞ

yði; jÞ �
XN

m¼1

Amði; jÞxmði; jÞ
�����

�����

2

2

þk
XN

m¼1

dmði; jÞxmði; jÞ½ �2

s:t:
XN

m¼1

xmði; jÞ ¼ 1;

ð3Þ

where k denotes regularization parameter; each dm(i,

j) describes the distance between the mth atom Am(i, j) and

input patch y(i, j). The analytical solution of problem (3)

can be simply gained by solving a regularized least square

problem.

2.4 Orthogonal Procrustes problem

We briefly review the orthogonal Procrustes problem

(OPP) in this subsection. OPP stems from factor analysis in

psychometrics [43]. OPP aims at finding an appropriate

transformation which corrects a data matrix X to match

another objective data matrix B.

Generally, denoting the orthogonal matrix as Q and the

two-dimensional data matrices as X, B [ <p9q, the

orthogonal Procrustes problem can be denoted as:

min
Q

XQ� Bk k2F; s:t: QTQ ¼ Iq: ð4Þ

Here, identity matrix Iq has size q 9 q and ||�||F repre-

sents the Frobenius norm. The analytical solution of

problem (4) could be gained by utilizing the singular value

decomposition (SVD) operation. Let USVT = BTX; the

optimal solution related to problem (4) is Q̂ ¼ VUT. Fur-

thermore, we can also multiply the orthogonal transfor-

mation matrix Q in the left side of matrix X, which can be

written by:

min
Q

QX � Bk k2F; s:t: QTQ ¼ Ip; ð5Þ

where Ip denotes a p 9 p identity matrix. By using the

SVD operation: USVT = XBT, the analytical solution of

problem (2) is given by Q̂ ¼ VUT: As discussed in [7],

problem (1) handles the horizontal direction variations

well, while problem (2) handles the vertical direction

variations well. Without loss of generality, we mainly deal

with the horizontal direction variations in this paper.

3 The proposed N2SOPR

3.1 Problem formulation

The patches of well-aligned two-dimensional training

images can be denoted as Ai [ < p9q (i = 1, …, N), where

N is the number of samples. Then, the linear mapping can

be denoted as

AðxÞ ¼
XN

i¼1

xiAi; ð6Þ

xi denotes the weight coefficient here. Generally, if there

comes a frontal probe face image patch y [ <p9q, it could

be linearly represented as: y = A(x) ? E; here matrix

E [ <p9q represents the error. Sometimes, the pose

between the training images and test image may be dif-

ferent. In this case, test image can be modified by yQ,

where Q [ < q9q represents an orthogonal transformation

matrix, aiming to make the pose of the input to adapt that
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of the training ones. The modified test image yQ can be

linearly approximated as follows:

yQ ¼
XN

i¼1

xiAi þ E: ð7Þ

Researchers in [9, 10] have revealed that, to depict the

potential structure noise, nuclear norm regularization is a

better choice. To benefit from this observation, the nuclear

norm regularization is also imposed on our representation

residual to preserve image structure property. Then, we can

formulate the orthogonal Procrustes regression as follows:

min
x;Q

yQ� AðxÞk k�; s:t: QTQ ¼ I; ð8Þ

where symbol ||�||* denotes the sum of the singular value of

a data matrix. The locality constraint is also incorporated

into the representation via a metric between each training

sample and the input image to reveal the prior information

from nearest neighbors. Our structural orthogonal Pro-

crustes regression model can be formulated as:

min
x;Q

yQ� AðxÞk k�þg d � xk k22 ; s:t: QTQ ¼ I; ð9Þ

where d = (d1, …, dN)
T is a distance vector, � is the ele-

ment-wise product, g is used to balance the contribution of

the locality constraint, and di ¼ y� Aik k2F denotes the

locality criterion to measure the distance between each

training atom and the input. For better reconstruction, we

also impose low-rank restraint on the weights to cluster the

input into the same subspace with the training samples.

Finally, we formulated our problem as follows:

min
x;Q

yQ� AðxÞk k�þk Hdiag xð Þk k�þg d � xk k22 ; s:t: QTQ

¼ I:

ð10Þ

where H = [Vec(A1), Vec(A2), …, Vec(AN)] and Vec(�)
denotes the vectorization operation of the matrix, k is the

parameter to control the contribution of low-rank term.

3.2 Optimization

The above optimization problem can be reformulated as

follows:

min
x;Q;S;T

Ek k�þk Tk k�þg d � xk k22

s:t: E ¼ yQ� A xð Þ; T ¼ Hdiag xð Þ;QTQ ¼ I
ð11Þ

The above nuclear norm optimization problem could be

optimized by augmented Lagrange multipliers (ALM)

method or the alternating direction method of multipliers

(ADMMs) [9, 10, 44, 45], using the next augmented

Lagrange function:

Ll x;Q;E; Tð Þ ¼ Ek k�þk Tk k�þg d � xk k22
þ Tr ZT

1 yQ� AðxÞ � Eð Þ
� �

þ Tr ZT
2 Hdiag xð Þ � Tð Þ

� �

þ l
2

yQ� AðxÞ � Ek k2Fþ Hdiag xð Þ � Tk k2F
� �

;

ð12Þ

where Tr(�) represents the trace operator, l[ 0 represents

a penalty parameter, Z1 and Z2 represent the Lagrange

multipliers. The above unconstrained problem can be

solved by optimizing the variables one by one, until some

convergence conditions are achieved.

(1) Updating Q: Given x, S and T, the optimization

problem can be reformulated as:

min
Q

l
2

yQ� AðxÞ � E þ Z1

l

����

����
2

F

: ð13Þ

We set P = A(x) ? E - Z1/l. Following some simple

algebraic steps, we have

yQ� Pk k2F ¼ Tr yQ� Pð ÞT yQ� Pð Þ
� �

¼ Tr QTyTyQ
� �

� 2tr yQPT
� �

þ tr PTP
� �

¼ yk k2F�2tr yQPT
� �

þ Pk k2F:
ð14Þ

By using the SVD: USVT = PTy, the solution of optimal

Q is given by Qk?1 = VUT.

(2) Updating E: Fix x, Q and T, we can rewrite the

objective function as:

min
E

1

l
Ek k�þ

1

2
E � yQ� AðxÞ þ 1

l
Z1

� �����

����
2

F

ð15Þ

Its solution is given by the singular value shrinkage oper-

ator [46]:

Ekþ1 ¼ UT1
l
½S�V : ð16Þ

where (U, S, VT) = svd(yQ - A(x) ? Z1/l); function svd

represents the singular value decomposition scheme.

Symbol T(�) denotes the singular value thresholding

factor, which is defined as

T1
l
S½ � ¼ diag max 0; sj;j �

1

l

� �	 


1� j� r

 !
: ð17Þ

Here, r denotes the rank of matrix S.

(3) Updating T: Fix x, Q and E, our objective function

can be rewritten as:
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min
T

k
l

Tk k�þ
1

2
T � HdiagðxÞ þ 1

l
Z2

� �����

����
2

F

ð18Þ

From the above discussion, the optimal solution of problem

(18) is

Tkþ1 ¼ UTk
l
½S�V ; ð19Þ

where (U, S, VT) = svd(Hdiag(x) ? Z2/l).
(4) Updating x: Fix Q, E and T, we can reformulate our

optimization problem as:

min
x

g d � xk k22

þ l
2

yQ� AðxÞ � E þ 1

l
Z1

����

����
2

F

þ HdiagðxÞ � T þ 1

l
Z2

����

����
2

F

 !
:

ð20Þ

This is a quadratic problem related to variable w. Follow-

ing some algebraic steps, the analytical solution of the

above regularized optimization problem can be derived by:

x ¼ bþ diagðb1Þð Þnb2
b ¼ lHTH þ 2gdiagðdÞ � diagðdÞ
b1 ¼ l H � Hð ÞT1
b2 ¼ lHTb3 þ l T � Hð ÞT1� Z2 � Hð ÞT1
b3 ¼ VecðyQ� E þ Z1=lÞ:

ð21Þ

Here, column vector 1 has N 9 1 entries with all ones,

and ‘‘\’’ represents the left matrix division operation.

Algorithm 1. ADMM algorithm for solving N2SOPR
Input: A set of offline training patchs A1,…,AN∈ℜp×q and probe image 
patch y∈ℜp×q, parameters λ, the termination condition parameter ε. 
Initialize: x = 0, Q =0, E =0, T =0, ε = 10-6.
1:  Fix others and set P = A(xk+1)+Ek-Z1

k/μ. By using the SVD: USVT = 
PTy, we can update Q by Qk+1 = VUT; 

2:  Fix others and update E via

( ) 2
1*

1 1min ( )
2

μ
μ

+ − − +
FE

E E yQ A x Z ; 

3:  Fix others and update Z via

( ) 2
2*

1min ( )
2

λ μ
μ

+ − +
FT

T T Hdiag x Z ; 

5:  Fix others and update x according to (21); 
6:  Update the multiplies

( )1 1 ( )μ= + − −Z Z yQ A x E ; 

( )2 2 ( )μ= + −Z Z Hdiag x T ; 
7.  If achieve termination condition (20), go to 8; otherwise go to 1.
8. Output: Optimal coding vector xk+1

Finally, the next termination conditions are utilized:

yQ� AðxÞ � Ek k1 � e and HdiagðxÞ � Tk k1 � e;
� �

ð20Þ

where e is a given tolerance. Algorithm 1 summarizes the

whole optimization procedure.

3.3 Face hallucination via N2SOPR

Denoting AH
m the HR training face images, and AL

m (m = 1,

…, N) its LR counterparts, our target is desired to restore

the target HR version Y from its observed LR input y.

Firstly, as in [36], the input LR face image and each

training one are decomposed into many overlapped matrix

patches and represented as y(i, j), AL
m(i, j) and AH

m (i, j),

respectively. By using N2SOPR, each position patch y(i,

j) is denoted as a linear representation on the same position

training patches AL
m (i, j) (m = 1,…, N). Then, we obtain the

desired HR version Y(i, j) by utilizing the same combina-

tion weights on the relevant HR training patch matrices.

Last but not least, we could obtain the target HR face by

means of integrating all the hallucinated HR patches and

meanwhile averaging values in the superposed regions

according to their corresponding positions. Algorithm 2

summarizes the whole face super-resolution algorithm in

detail.

3.4 Complexity analysis

The computational cost of the proposed approach is dis-

cussed in this part. Because the super-resolution of HR face

images involves steps of matrix multiplications and addi-

tions, we only access the time complexity of the repre-

sentation learning in the proposed method. The major

computation of Algorithm 1 depends on two parts: (a) the

SVD computing and (b) combination weights learning. It

can be found that there are mainly four parts affecting the

time cost: the patch number M in one image, the training

samples number N, maximum iteration times maxIter and

the dimension pq of one patch.

In steps 1, 2 and 3, the time complexity of SVD oper-

ation is O(q3), O(pq2) and O(pqN2), respectively. Follow-

ing [30], it takes O(pqN3) for the representation learning
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phase. Thus, it costs O(q3 ? pq2 ? pqN2 ? pqN3) for each

patch in Algorithm 1. By taking into account the maximum

iteration times and patch number, the computational cost of

our proposed N2SOPR algorithm is about O(maxIter(q3-

? pq2 ? pqN2 ? pqN3)M). For comparison, the cost of

LCR and SSR is about O(pqN3M) and O(maxIter2pqN3M),

respectively.

4 Experiments and discussion

4.1 Database description

To access the efficiency of our proposed method, we

conduct tests on the FERET face database [47]. This

database includes samples from 200 persons; each person

was captured at nine viewpoints ba, bb, bc, bd, be, bf, bg,

bh, bi, respectively. The database also contains frontal

images (denoted as bk) corresponding to viewpoint ba, but

with different lighting conditions. We select 180 frontal

images from 180 subjects as training samples (some sam-

ples are listed in Fig. 1), and other 20 face images from 20

subjects with pose variations as the testing set (some

samples are listed in Fig. 2). All the faces are manually

cropped and resized to the size of 80 9 80. By smoothing

(filter size is 4 9 4) and down-sampling (down-sampling

factor is 4) the HR faces, we can form the corresponding

LR ones, whose size is 20 9 20.

4.2 Parameter analysis

To achieve the best performance, we adjust the parameters

for our algorithm. In our method, the first parameter k is

applied to balance the low-rank term, and the second

parameter g is used to control the locality constraint. We

adjust our parameters to find the optimal value by means of

the peak signal-to-noise ratio (PSNR) and Structural

SIMilarity (SSIM) [48] scores.

Fig. 1 Some training sample images

Fig. 2 Some testing images with pose variations and their corresponding frontal counterparts
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4.2.1 Influence of parameter k

We first fix the value of g and set the range of k as 10-7–

10. The performance with different k by means of PSNR

and SSIM scores is shown in Fig. 3, from which we can

survey that the PSNR and SSIM scores grow with the

increase in k. When k is set to 1, our method can obtain the

best performance. When k is larger than 1, the PSNR and

SSIM scores begin to decline. So we can select the value of

the parameter k as 1. In Fig. 4, we can also find that, when

k = 1, the recovered image is clearest and has many facial

details. But when k = 10, the recovered image is blurred

again. Because in the process of synthesis, the low-rank

property is over-strengthened, resulting in increased

reconstruction error.

4.2.2 Influence of parameter g

We then fix the value of k and set the range of g as 10-7–

10. Figure 5 shows the performance with different g in

terms of PSNR and SSIM scores. Figure 6 displays some

super-resolved faces with different g. From the above fig-

ures, we can intuitively see that with g increases, the

average PSNR and SSIM values increase. When g is set to

10-4, the average PSNR reaches the peak and then grad-

ually decreases and tends to be stable with larger g.
However, when the g is set to 10-5, the average SSIM

reaches the peak. The change in terms of PSNR and SSIM

scores may be slightly different because the locality

parameter g ensures the quality of the face image synthesis

in a certain degree. As the SSIM value increases, the

proportion of errors in the synthesized face image decrea-

ses, and the face structure is affected. By taking both PSNR

and SSIM values into account, we set g to 10-4.

4.3 Comparisons with other approaches

To access the efficiency of our N2SOPR approach, we

compare it with other state-of-the-art approaches in this

part: LSR method [33], SR method [34], LCR method [36],

Fig. 3 PSNR and SSIM values of our method with different k

Fig. 4 Hallucinated faces with different k values
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SRCNN method [39] and SSR method [37]. As for those

local approaches, we suggest using the size of 12 9 12

pixels for HR patch, and there is 12 9 4 pixels overlapped

with neighbor patches. Thus, the relevant LR patch has size

of 3 9 3 pixels, so there is 3 9 1 pixel overlapped with its

neighbors. For reasonable comparison, the parameters of

all comparative approaches are tuned to obtain their best

possible performance. In addition to the visual comparisons

of different methods, the performance of each method is

also quantified by means of PSNR and SSIM [48] values

between the reconstructed images and the ground truth

ones.

Some typical super-resolved faces via different

approaches are listed in Fig. 7. We can see that the images

synthesized by LSR and SR methods are seriously dis-

torted, especially in the contour of eyes. Compared with

these three methods, the results of LCR method are

improved. But the synthesized face images are still blurred.

The face image synthesized by SRCNN method has richer

face details, but there is still blurring. In addition to the

distortion, we can also find that the pose variations are still

existed in the synthesized images, which will reduce the

performance of following recognition system. Although the

face images synthesized by the SSR method still have a

little noise in the faces, the details of nose, eyes and mouth

are basically recovered. By introducing an orthogonal

matrix low-rank constraint, our N2SOPR method can

obtain more clear images, and the recovered faces are

closed to the frontal HR face images. The objective com-

parisons by means of PSNR and SSIM scores are also

given in Table 1. All the above results show a considerable

superior of our method over some conventional learning-

based methods and recently proposed deep learning-based

method.

4.4 Recognition experiments

For face recognition task, we prefer to obtain near-frontal

faces in some applications. To this end, a face recognition

test is conducted in this part, using the hallucinated HR

Fig. 5 PSNR and SSIM values of our method with different g

Fig. 6 Hallucinated faces with different g values
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faces of our proposed method. We select 400 frontal face

images from FERET for training, with two faces for each

subject. One non-frontal face per subject is selected for

testing. All the test faces are smoothed and down-sampled

to 40 9 40 pixels. It should be noted that each LR input is

hallucinated by using ‘‘leave-one-out’’ scheme, and the

faces belong to the testing individual are removed from the

training samples. For the sake of simplicity, the sparse

representation-based classifier (SRC) [25] is applied to

recognize the hallucinated faces.

Fig. 7 Hallucinated faces on the FERET database by different methods. From top to bottom: LR input face images, the hallucinated face images

by LSR [33], SR [34], LCR [36], SRCNN [39], SSR [37], our N2SOPR method and the original HR frontal face images

Table 1 The average PSNR and

SSIM values of different

methods on the FERET

database

Methods LSR [33] SR [34] LCR [36] SRCNN [39] SSR [37] N2SOPR

PSNR (dB) 18.3648 18.5988 19.4243 19.4464 19.7119 20.7319

SSIM 0.3899 0.4171 0.5045 0.5156 0.5367 0.6127
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Table 2 tabulates the recognition rates (RAs) associated

with comparable hallucinated approaches. In Table 2, we

can observe that the hallucinated HR faces by our N2SOPR

method could obtain a better performance than other

approaches. Previous SR methods ignore the pose varia-

tions when we learn the representation weights, resulting in

the hallucinated faces sensitive o these variations. We

mainly attribute the superiority of N2SOPR to its ability to

take into account these variations in the hallucinated faces.

5 Conclusion and future work

This study presents a nuclear norm regularized structural

orthogonal Procrustes regression (N2SOPR) method for

face hallucination with pose variations. The orthogonal

Procrustes regression is applied to seek an appropriate

transformation between two data matrixes to make the pose

of one data to adapt that of the other, and we also impose

the nuclear norm regularization on the representation

residual to preserve image inherent structural property. In

addition, the low-rank property and locality constraint are

taken into consideration on the representations, desiring to

adaptively cluster the input into the same subspace as the

training samples. Both hallucination and recognition

experiments on the FERET face database have demon-

strated that our approach could obtain better result than

some related methods.

We mainly discuss the effect of pose in this paper.

However, noise, expression and illumination variations

also exist in real-world applications. Also, how to take into

account the facial structure prior in deep learning-based

models needs further investigation in the future work.
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