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a b s t r a c t

Deformable Convolutional Networks (DCNs) are proposed to solve the inherent limited geometric trans-
formation in CNNs, showing outstanding performance on sophisticated computer vision tasks. Though
they can rule out irrelevant image content and focus on region of interest to some degree, the adaptive
learning of the deformation is still limited. In this paper, we delve it from the aspects of deformable mod-
ules and deformable organizations to extend the scope of deformation ability. Concretely, on the one
hand, we reformulate the deformable convolution and RoIpooling by reconsidering spatial-wise atten-
tion, channel-wise attention and spatial-channel interdependency, to improve the single convolution’s
ability to focus on pertinent image contents. On the other hand, an empirical study is conducted on var-
ious and general arrangements of deformable convolutions (e.g., connection type) in DCNs. Especially on
semantic segmentation, the study yields significant findings for a proper combination of deformable con-
volutions. To verify the effectiveness and superiority of our proposed deformable modules, we also pro-
vide extensive ablation study for them and compare them with other previous versions. With the
proposed contribution, our refined Deformable ConvNets achieve state-of-the-art performance on two
semantic segmentation benchmarks (PASCAL VOC 2012 and Cityscapes) and an object detection bench-
mark (MS COCO).

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Due to the object scale, pose, viewpoint, and part deformation,
accommodating these geometric variations is still challenging in
sophisticated computer vision tasks [1–6]. Different from the man-
ner of depending on large data with sufficient variations or that of
using transformation-invariant features and algorithms [1,7,8],
Deformable ConvNet (DCNv1) [9] was proposed to learn a 2D spa-
tial offset to let the grid sampling locations swim with respect to
the proceeding feature maps. However, since the adaptive learning
of the filter deformation is limited, DCNv1 still suffers from the
problem of the irrelevant image content. Then, Zhu et al. [10]
revised it and proposed Deformable ConvNet v2 (DCNv2). They
made a reformulation of deformable convolution that includes
channel-wise attention named modulation mechanism, and then
they stacked more such deformable convolutions into networks
to intensify the control of sampling over a broader range of feature
levels [8]. The sampling locations finally surround the distinct
object content and the channel weights are activated by modulated
mechanism to judge the impact of sampling point. Ideally, if the
sampling points locate in irrelevant content, the channel weight
would be punished by multiplying a small factor to alleviate its
influence. Therefore, both the spatial and channel attention should
share the same function to be object-sensitive. However, due to
proceeding the same input feature map by separate convolutions
without spatial-channel interaction, these two attention modules
may be unknown to each other and hard to adapt synchronously.
This limitation makes the modulation mechanism a simple learn-
able feature amplitude that doesn’t powerfully constraint the
channel weight exactly, so that the spatial attention weights do
not correlate well with feature importance measures. Besides,
DCNv2 replaces 13 standard convolutions with deformable convo-
lutions in ResNet101 [11]. This choice is suboptimal to enhance the
adaptive geometric modeling ability.

Deformable convolution still has potentials to be excavated. In
this paper, inspired by the observation that spatial offset and mod-
ulated offset share an internal relationship [12,13], we mainly from
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two aspects, deformable modules and deformable organization, to
refine the deformable convolutional network, which is named
Adaptive Deformable ConvNet (A-DCN).

For the deformable modules, we propose to leverage an inter-
module information to connect spatial and channel attention mod-
ules. We first reformulate the deformable convolution and deform-
able RoIpooling by correlating spatial attention with channel
attention. As shown in Fig. 1, in spatial attention, an adaptive dila-
tion factor is introduced to initialize the sample locations and to
decompose the displacement of them, aiming to strengthen the
process of offset learning. Second, the adaptive dilation could be
multiplied in modulated mechanism. Thus, the spatial and channel
attention could be interpolated. We use this information as a con-
straint added into the channel-wise attention (modulation mecha-
nism) to correlate it with the tendency or choice of spatial
attention. Considering the refinement and interdependency of both
spatial and channel attention, the geometric transformation ability
in manipulating spatial support regions is further improved.

From the aspect of deformable organizations, both DCNv1 and
DCNv2 term deformable convolution as a powerful counterpart
of regular convolution. They replace the plain counterpart in
ResNet [11] with deformable convolutions. However, the factors
of influencing enhanced geometric modeling ability are not com-
prehensively exploited in these works. In this paper, we develop
deformable convolution into feature aggregation module as an
independent congregation based on high-level feature maps. And
then we can make an empirical study of much more general and
various settings of three kinds of deformable convolutions (i.e.,
standard, modulated, and our adaptive deformable convolutions).
The study yields some significant findings for the property of
deformable convolutions.

Existing applications [12,9,10] on object detection are much
more than that on semantic segmentation. And some of their
findings on these two tasks are different. Therefore, we make a
thorough analysis to delve the performance of deformable convo-
lutions on semantic segmentation. Besides, we propose a method
named Adaptive Deformable ConvNet (A-DCN) for semantic seg-
mentation [14,15] which achieves state-of-the-art performance
Fig. 1. Scheme of adaptive deformable convolu
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on PASCAL VOC 2012 [16] and Cityscapes [17]. To further assess
the generalization of deformable convolution, our A-DCN is also
evaluated on object detection benchmark, achieving outstanding
gains over the original model on COCO [18].

Our contributions can be summarized as follows:

(1) We reformulate the deformable module to strengthen the
adaptive transformation ability. The refinement in spatial,
channel attention, and spatial-channel interdependency allows
the deformation to be more powerful with minimal cost.
(2) An empirical study is conducted on the deformation organi-
zation, which concludes the factors of cooperation within
deformable convolutions. These experiments will give some
hints for the further works using deformable convolution.
(3) More ablation study is implemented on semantic segmenta-
tion to analyze the capability and property of previous and our
proposed deformable convolutions. These experiments provide
extensive understanding of dense prediction.
(4) We propose Adaptive Deformable ConvNet (A-DCN) which
could be incorporate into state-of-the-art CNNs [14,15,19,20]
of computer vision. And our methods also achieve more supe-
rior performance than original architecture on two benchmarks
of semantic segmentation (PASCAL VOC 2012 [16] and Citys-
capes [17]) and one benchmark of object detection (COCO
[18]). Our code now is available on https://github.com/Chen
feng1271/Adaptive-deformable-convolution.

2. Related work

Attention mechanism enables a neural network to focus on
relevant content and exclude redundant context. It first showed
superior advancement in the field of natural language processing
(NLP) [21–23], such as the landmark Transformer attention module
[24]. Then the success of attention is adopted into computer vision
tasks [25,26] to capture long-range dependencies and contextual
information. On semantic segmentation, inspired by non-local
module [27], the works of [28–30] model pixel-to-pixel relation
to exploit object-wise context to update the representation for
tion. K is the kernel size of it (e.g., 3� 3).
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each pixel. [31] designs CO-attention Siamese Network to address
unsupervised video object segmentation task. Inspired by the
observation of human attention and primary object judgement,
[32] constructs two sub-task models to simulate human dynamic
attention mechanism. On object detection, RelationNet [33] intro-
duces object-wise correlation to model the relation between
objects. [25] proposes domain attention which is composed by
few SEblocks[34]. [35] proposes a hierarchical pyramid attention
module to highlight and capture salient object edge. ASNet [36]
uses a hierarchy of convLSTMs to sequentially refine the saliency
features over multiple steps. Recently, GNNs attract more
researchers’ attention to reason visual relationship. Working as a
more flexible and basic attention network, GNNs could focus on
input graph locally and globally, which bring them reasoning abil-
ity as meeting partial observation [37]. Besides, recent works focus
on the theoretical explanation of attention mechanism. [38] makes
an empirical study on spatial attention that decomposes each
attention module in terms of key, query and relative position.
[39,40] delve the relationship between self-attention and convolu-
tional layers by reformulating these attention modules.

Deformable ConvNet v1 [9] proposes a learnable offset to aug-
ment the spatial sampling locations with respect to preceding fea-
ture maps. Given a convolutional kernel of K sampling locations, let
wk; pk and Dpk refer to the weight, handpicked offset and learnable
offset for the k-th location, respectively. The deformation process
can be formulated as:

yðpÞ ¼
XK

k¼1

wk � xðpþ pk þ DpkÞ; ð1Þ

where xðpÞ and yðpÞ denote the feature representations at location p
from the input feature maps x and from output feature maps y.
Standard deformable convolution only possesses top branch of
Fig. 1. In practical learning, an extra convolution is applied to model
the offset function, allowing the deformation to condition on the
input in a local, dense and learnable manner [41,42].

Additionally, the authors observed that the pixels near the cen-
ter of receptive field have much larger impact and the effective
receptive field shares a Gaussian distribution [9,43,44]. This obser-
vation allows them to employ a metric named ‘effective dilation’ to
interpret the internal mechanism of deformable convolution. The
effective dilation, which measures the distances between all adja-
cent pairs of sampling locations in the filter, inspires us to active
the predefined offset pk to facilitate the learning process.

Deformable ConvNet v2 [10] introduces the modulation mech-
anism into the standard deformable module [9] to strengthen the
capability in manipulating spatial support regions. Zhu et.al., [10]
reformulated the modulated deformable convolution as:

yðpÞ ¼
XK

k¼1

wk � xðpþ pk þ DpkÞ � Dmk; ð2Þ

where Dmk is the learnable modulation scalar for the kth location.
The modulated deformable convolution can be divided into spatial
attention with offset Dpk and channel-wise attention with modula-
tion Dmk. Spatial and channel attention refers to top and bottom
branches of Fig. 1. Both the offset Dpk and modulation Dmk are
obtained via a separate convolutional layer applied over the same
input feature maps x with 2K and K output channels respectively.
However, the single separate convolution with only input obstructs
the correlation of attention weight between spatial and channel
attention. In this paper, we refine the modulated deformable convo-
lution and make a well design of two attention mechanisms and
spatial-channel interdependency that interacts the tendency of
them. Besides, DCNv2 replaces 10 more plain counterpart than
the setting of DCNv1 in the ResNet [11] with deformable
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convolution, to considerably enhance the model’s ability of geomet-
ric transformation. This simple replacement focuses on the defor-
mation brought by stacking deformable convolutions in backbone
and may ignore the cooperation of deformable convolutions. In Sec-
tion 5, in terms of three kinds of deformable convolution, we delve
the keys of the cooperation that contribute to better performance.

3. Adaptive deformable modules

3.1. Adaptive deformable convolution

To further facilitate the ability of adaptive learning of deform-
able convolution, we refine it from the aspects of spatial, channel
attention and their interdependency. Naturally, the new version
is named adaptive deformable convolution (a-dconv). We assume
that images share the linearity of feature maps and the pixels at
the same distance from receptive field center should possess com-
parable impact [9,43,26]. It means that the local image content
changes gradually. And according to the distance to the activation
unit, the attention weight of pixels that deformable convolution
focuses on has obvious phases. Thus, we introduce the idea of
adaptive dilation factor to model this obvious phase. As illustrated
in Fig. 2(a) and (b), the moving of each point in offset could be
decomposed. Take the three points in the middle slice as an exam-
ple, the moving of them is divided into sk � pk and Dp. Specifically,
sk � pk takes relative long step and is same in three points’ moving,
which could generally describe the distance of three points to the
center. The final condition is like Fig. 2(c): the points of each slice
are under single phase. The adaptive dilation factor sk could locally
represent the distance of phase to the center, which directly indi-
cates the impact of pixels. Therefore, we name sk as phase distance.
Then, the channel weight mk could be further activated by this dis-
tance information. In general, the channel weight of far sampling
point is depressed and that of the close one is aggravated.

With a convolutional kernel size of N which has K ¼ N2 sam-
pling locations (e.g., 9 sampling locations in a 3� 3 convolution),
we let wk; pk;Dpk ¼ fDaij;Dbijg and Dmk refer to the weight, hand-
picked offset, learnable offset and modulation scalar for the kth
location. faij; bijg locates the position of sampling points in sam-
pling grid or spatial dimension. The refined deformable convolu-
tion can be formulated as:

yðpÞ ¼
XK

k¼1

wk � x pþ sk � pk þ Dpkð Þ � ð1� skÞ � Dmkð Þ; ð3Þ

where sk 2 RN is the adaptive dilation factor that contains the gen-
eral distance information of sampling locations. xðpÞ and yðpÞ
denote the feature representations at location p ¼ fa0ij; b0

ijg from
the input feature maps x and that from output feature maps y.
The final location in the input ðpþ sk � pk þ DpkÞ ¼ faij; bijg after add-
ing offset can be denoted as:

aij ¼ a0ij þ sij � dij þ Daij;

bij ¼ b0
ij þ sij � dij þ Dbij;

ð4Þ

where i 2 ½�N=2;N=2� \ Z; j 2 ½�N=2;N=2� \ Z locate the integral

coordinate in the kernel grid, and sij 2 fskgKk¼1 is an adaptive dilation
vector for the position ði; jÞ. dij is the predefined dilation rate for
position ði; jÞ. Since sk and Dpk are fractional, xðpÞ is computed by
bilinear interpolation. Following DCNv1 and DCNv2 [9,10], we let
s;Dpk and Dmk come from a separate convolution with 3K þ

ffiffiffiffi
K

p

output channels. The 2 K output channels model the spatial offset

fDpkgKk¼1, and the consecutive K output channels correspond to

fDmkgKk¼1 2 ½0;1� which is activated by sigmoid function.

fskgKk¼1 2 ½0;1� that is modeled by the remaining
ffiffiffiffi
K

p
channels is a



Fig. 2. Illustration of displacement of sampling locations in adaptive deformable convolution. The green points are predefined sampling locations and the blue points are the
obtained sampling locations after updating the offset. sk � pk intentionally refers to a large step and Dpk refers to relative small step. (a) is the final moving in offset; (b) is an
example of decomposition of displacement of three points of middle slice in (a); and (c) is the illustration of modeling phase distance. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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tensor cooperating with Dpk at spatial dimension. And the learning
rate for these three parts is set to 0.1 times of the corresponding
layers.

Standard and modulated deformable convolutions [9,10] apply
the task of offset learning to Dpk. This adaptive dilation factor aims
to disentangle the displacement of sampling locations into a large
step sk � pk and a tiny step Dpk as shown in Fig. 2. The large step is
determined by adaptive dilation factor, interacting the gradients at
the locations that share similar distance to the kernel center. This
decomposed manner advances the whole training of Deformable
ConvNet with negligible computation, because that adaptive dila-
tion factor only takes

ffiffiffiffi
K

p
channels. Besides, the adaptive dilation

factor can be used in initializing the sampling locations, which is
a much more flexible way than traditional dilation. The range of
spatial offset is unrestricted while the modulation scalar is within
½0;1�. We adjust the sk with ½0;1� for magnitude correlation. In this
paper, we use 3� 3 deformable convolution in our Adaptive
Deformable ConvNet where Dpk; sk and Dmk are defaulted to 0, 1
and 1 respectively.

In modulated deformable convolution [10], the spatial attention
(spatial offset) and channel attention (modulation scalar) mecha-
nisms are independent, since both of them are connected in the
parallel way. When the sampling locations move, the learning pro-
cess of modulation may not correspondingly adjust so as to
become inexact this setting. In our work, since the pixels near
the active units have larger impact, we use adaptive dilation factor
which contains the distance information, to interact the spatial and
channel attention parts. Therefore, the modulation module is also
sensitive to the distance. In the proceeding of feature, spatial and
channel parts could cooperatively learn the relevant image content
and exclude the irreverent content.

3.2. Adaptive deformable RoIpooling

As an aligned transformer [20,45] which converts an input fea-
ture map with arbitrary size into the fixed size one, RoIpooling is
widely used in object detection. We also introduce a corresponding
adaptive deformable RoIpooling which uses spatial-channel inter-
dependency to enhance the geometric modeling ability.

Given an input RoI, RoIpooling is taken to divide the RoI into K
spatial bins. The cells belonging to each bin, are aggregated to com-
pute the bin output. Denote pk;Dpk; sk and Dmk as predefined offset,
856
learnable offset, adaptive dilation factor and modulation scalar for
the kth bin, respectively. In the adaptive deformable RoIpooling,
the output yðkÞ of kth bin can be denoted as:

yðkÞ ¼
Xnk
j¼1

x pkj þ sk � pk þ Dpk

� � � ð1� skÞ � Dmkð Þ=nk; ð5Þ

where nk is the number of sampled bin cells of the kth bin, and xðpÞ
is the feature at location p using bilinear interpolation to compute
the offset movement. pkj is the sampling location at j-th gird cell
of kth bin. The practical usage follows [10] that employs two fc lay-
ers of 1024-D and an additional fc layer with 3K þ ffiffiffiffi

K
p

channels. As
adaptive deformable convolution, the first 2 K channels are normal-
ized learnable offset fDpkgKk¼1 and K channels are normalized mod-

ulation scalar fDmkgKk¼1 using sigmoid function. The remained
ffiffiffiffi
K

p

channels are used to produce adaptive dilation factor fskgKk¼1. The
learning rates of these additional fc layers are the same as those
of existing layers.
3.3. Relationship of elements

To facilitate the understanding of adaptive deformable convolu-
tion, we reformulate three kinds of deformable convolutions in
terms of self-attention mechanisms [39].

First, to exploit the elements (i.e., query, key and relative posi-
tion between key and query content) of attention module in com-
puter vision tasks, we follow [38,39] to give a generalized attention
formulation. Let k represent a key element with content xk and let q
index a query element with content zq. In multi-head self-
attention, the output feature yq can be formulated as follows:

yq ¼
XM
m¼1

Wm

X
k2Xq

Am q; k; zq; xk
� ��W 0

mxk

2
4

3
5; ð6Þ

where M represents the attention head, Am q; k; zq; xk
� �

is the atten-
tion weights inmth attention head. Xq is support region to compute
the corresponding output query. In the case of convolution, Xq is the
convolutional window. Wm and W 0

m are the learnable weights.
For deformable convolution, the learnable weights are updated

based on query content and relative position. Thus, standard



F. Chen et al. Neurocomputing 453 (2021) 853–864
deformable convolution (s-dconv) could be represented as a spe-
cial instantiation:

ys�dconv
q ¼

XM
m¼1

Wm

X
k2Xq

As�dconv
m q; k; xq

� ��W 0
mxk

2
4

3
5; ð7Þ
As�dconv
m q; k; xq

� � ¼ G k; qþ pm þw>
mxq

� �
; ð8Þ

where xq denotes the query content, G �ð Þ denotes the bilinear inter-
polation kernel. pm acts equally as predefined offset pk in Eq. 1.w>

m is
a projection metric that projects query content xq to deformable off-

set dimension. As�dconv
m is the spatial attention weight based on

query content and relative position.
For modulated deformable convolution (m-dconv), it can be

reformulated as:

ym�dconv
q ¼

XM
m¼1

Wm

X
k2Xq

As�dconv
m q; k; xq

� � � C q; k; xq
� ��W 0

mxk

2
4

3
5; ð9Þ

where C q; k; xq
� �

is a kind of channel attention named modulated
module, which only uses query content. In the proceeding of fea-
ture, the spatial position of each realigned pixel is identical to that
of input pixel in modulated module. Therefore, this modulated
module works independently with spatial attention and realigns
the channel weight of each pixel. In the case of modulated deform-
able convolution, the position difference between spatial and chan-
nel attention may make the cooperation of them inconsistent.

In our adaptive deformable convolution, the output ya�dconv
q is

computed as follows:

ya�dconv
q ¼

XM
m¼1

Wm

X
k2Xq

G k; qþ pm þ amw>
mxq

� � � C q; k; xq; am
� ��W 0

mxk

2
4

3
5;

ð10Þ

where am is the adaptive factor that models the relationship
between the position of spatial attention and that of channel atten-
tion. Therefore, taking the relationships of two attention modules
into consideration, adaptive deformable convolution could measure
the compatibility of key-query pair more exactly.
4. Adaptive deformable convolutional network (A-DCN)

4.1. A-DCN for semantic segmentation

We use PASCAL VOC [16] and Cityscapes [17] to train our
model. PASCAL VOC 2012 obtains 20 semantic categories. Follow-
ing the protocols in [14,15], we augment the SBD dataset [46] into
training. Finally, the total dataset has 10582 annotated images for
training, 1449 annotated images for evaluation and 1456 anno-
tated images for testing. For Cityscapes, it is a roadway dataset
containing 19 semantic categories. And following [28], train set
has 2975 images and validation set has 500 images and test set
has 1525 images.

We train our model with no bells and whistles. The code of
adaptive deformable convolution is revised based on official code
of DCNv1 [9] andmm-detection [47]. In all models of semantic seg-
mentation, e.g., DeepLabv2 [48], DeepLabV3 [14] and DenseASPP
[49], regular convolutions are replaced with deformable convolu-
tions. We train our model uses SGD with mini-batch 8 on 8 GPUs.
The images are resized to shorter side of 360/780 for PASCAL VOC/
Cityscapes, respectively. The total epoches are set to 50/240 for
these two datasets using random crop. We use the ploy learning
rate policy where the initial learning rate 4� 10�3 is multiplied
857
by 1� iter
max iter

� �power with power 0.9. The momentum is set to 0.9

and the weight decay is 10�4.
For evaluation of ablation study, the results are implemented on

validation set with single scale input. Besides, to examine the gen-
eralization of our adaptive deformable convolution, the final
results of different models in Section 6 are based on validation
set with multi-scale input. We use mean interaction-over-union
(mIoU) over image pixels as our metric of semantic segmentation.
Following DCNv1 and DCNv2, we also use mIoU@V and mIoU@C
for PASCAL VOC and Cityscapes respectively to denote the results
of two datasets.

4.2. A-DCN for object detection

We use COCO [18] to train our models. Following the protocol of
[20,19] of using MS COCO 2017, we use 118 K trainval set for train-
ing and 5 K images of validation set for evaluation.

We incorporate the adaptive deformable modules into Faster R-
CNN [20], Mask R-CNN [45] and Cascade Mask R-CNN [50]. For
these models, 256 RoIs are sampled for the regional proposal.
The scale of input is resized to 800 pixels in shorter side. The
implementations of these networks are 35 K and 240 K iterations
for PASCAL VOC and COCO on 8 GPUs respectively. The learning
rates are set to 0.02 with momentum 0.9 and weight decay
0.0001. For other hyper-parameters, we employ the default setting
of these networks in mm-detection [47]. Besides, we use ResNet-
101-FPN pretrained on ImageNet as the backbone of the models
without feature mimicking. For evaluation, the average precision
(AP) is used for our metric.
5. Well organization for deformable ConvNet

In this section, we discuss the suitable organizations and set-
tings of deformable convolutions to maximize the geometric trans-
formation modeling ability. Due to that previous works have
explored much more detailed implementation of deformable mod-
ules on object detection than that on semantic segmentation, in
this work, we pay more attention on the ablation study on seman-
tic segmentation. The feature aggregation between encoder and
decoder has more flexible and deliberated variants. In these vari-
ants, all factors that impact on the performance of deformable con-
volution could be included. Therefore, we replace the plain
counterpart with deformable convolution in feature aggregations
(e.g., ASPP [15]) which follows the backbone, on semantic
segmentation.

Connection Type: We arrange three kinds of deformable con-
volutions in the way of stacked residual connection, parallel con-
nection and dense connection separately. These connection types
construct the basic CNNs. Considering the intuition that deform-
able convolution works better on high-level feature maps, we place
the part containing deformable convolutions after the backbone,
acting as feature aggregation for ablation. In each model,
ResNet101 is employed as backbone and DeepLabv3’s decoder is
used for upsampling. As shown in Table 1, different versions of
deformable convolutions almost make a gain over using regular
convolution via various connection types, except in deformable
DenseASPP [49]. In three-kind connection types, the residual con-
nection achieves the most obvious promotion than others, while
the performance of it may not be the best one. In dense connection
type (i.e., DenseASPP and deformable DenseASPP), different from
that standard and modulated deformable convolutions lead a per-
formance degradation, our adaptive deformable convolution
achieves an improvement. We believe that multiple skip connec-
tions cause the standard and modulated weight learning to be vul-
nerable. This degradation is more severe as using the modulated



Table 1
The effect of using different connection types of deformable convolutions. s-dconv, m-dconv and a-dconv represent the standard, modulated and adaptive deformable
convolutions respectively. ASPP and DenseASPP are the feature aggregations of DeepLabv3+ and DenseASPP respectively. The stacked residual connection type is the same as
residual block of ResNet [11].

Method Connection Convolution mIoU@V mIoU@C

Stacked residual convolutions Stacked residual Regular 76.94 74.89
Deformable stacked convolutions Stacked residual s-dconv 77.39 75.24

m-dconv 77.83 75.60
a-dconv 78.06 76.11

ASPP parallel regular 78.08 75.32
deformable ASPP parallel s-dconv 78.23 75.83

m-dconv 78.22 75.91
a-dconv 78.70 76.43

DenseASPP dense regular 77.35 76.85
deformable DenseASPP dDense s-dconv 75.65 76.55

m-donv 75.42 76.49
a-dconv 77.82 77.09
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deformable convolution. The unrelated position between spatial
and channel attention in modulated deformable convolution
aggravates the vulnerable condition.

Basically, the learnable offset is a relative position between key
and query in term of self-attention. And the supporting key is
restricted by a local window centered at query location. For the
parallel connection (i.e., deformable ASPP [15]), it could be
regarded as a multi-head attention module (other connection
types have more series connections), including long-range depen-
dency and horizontally-symmetric inter-dependencies and leading
to flexibly adjust the deformation learning.

More Deformable Convolutions: The most direct way of
enhancing spatial adaptive transformation is adding more deform-
able convolutions [10]. Ablation study of where deformable convo-
lution should be placed could be divided to backbone and feature
aggregation. For the deformable convolution in backbone, we fol-
low [9] that applys more deformable convolutions and replaces
their counterparts in Res5 block of ResNet-101 serially. As shown
in Table 2, continuously increasing deformable convolutions
indeed allows Deformable ConvNet to achieve better performances
when DCNs use 1 to 3 deformable convolutions. In FCN [51], using
standard, modulated, and our adaptive deformable convolutions
respectively achieve 71.86%, 72.36%, 72.54% mIoU as the best per-
formance. However, when most replacement happens at low-level
stages without guide, such as feature mimicking, the gain brought
by adding more deformable convolutions may not become obvious
or even fall down. When using 6 deformable convolutions in
DeepLabv2 [48], the results of using three deformable convolutions
separately decrease 0.44%, 0.09%, 0.15%. This phenomenon is dif-
ferent from the observation that using more deformable convolu-
tions gives better results in object detection [9].
Table 2
More deformable convolutions in the last 1, 2, 3, and 6 convolutional layers (of 3�3
filter) in backbone of ResNet101. s-dconv, m-dconv and a-dconv denote standard,
modulated, adaptive deformable convolutions respectively. Results (mIoU, %) are
reported on PASCAL VOC 2012 validation set.

Usage of deformable convolution (#layers) Version FCN DeepLabv2

res5c(1) s-dconv 69.57 73.56
res5b,c(2) 70.32 74.51
res5a,b,c(3,default) 71.86 74.92
res5&res4b22,b21,b20(6) 71.58 74.48
res5c(1) m-dconv 69.78 73.80
res5b,c(2) 70.65 74.95
res5a,b,c(3,default) 72.36 75.19
res5&res4b22,b21,b20(6) 72.30 75.10
res5c(1) a-dconv 69.70 73.96
res5b,c(2) 70.87 75.21
res5a,b,c(3,default) 72.54 75.36
res5&res4b22,b21,b20(6) 72.50 75.21
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For adding more deformable convolutions in feature aggrega-
tion, we use different stages/branches in deformable DenseASPP
and deformable ASPP where each 3 � 3 regular convolution is
replaced by deformable convolution. As shown in Fig. 3, three
kinds of deformable convolutions improve final results in deform-
able ASPP module. Compared with the setting using regular convo-
lutions, that of standard or modulated deformable convolutions
has about 0.5% promotion and that of adaptive deformable convo-
lution has further about 0.5% improvement. However, this
improvement doesn’t repeat in deformable DenseASPP module.
For standard and modulated deformable convolutions, the curves
Fig. 3. Adding more deformable convolutions in the branches or stages of feature
aggregation. Results are reported on PASCAL VOC 2012 validation set using
ResNet101. s-dconv, m-dconv and a-dconv denote standard, modulated, adaptive
deformable convolutions respectively.
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fall down as adding more convolutions. In the same condition, only
adaptive deformable and regular convolutions could increase their
results. This phenomenon also verifies the superiority of our pro-
posed method.

Image Resolution and Output Stride: DCNv1 and DCNv2 [9,10]
delve the influence of image resolution to the performance of
Deformable ConvNet on object detection. In this work, we find that
Deformable ConvNets are sensitive to image resolution and output
stride of backbone on semantic segmentation. Fig. 4 indicates the
results of applying regular ConvNets and three kinds of Deformable
ConvNets with different image resolutions and evaluation output
strides (eval OS). We use image resolutions of
f200;300;400;500;600;700g for PASCAL VOC 2012 val set in the
case of evaluation output stride of 8 and 16. When the eval OS is
8, the curves have similar tendency. The curves of regular convolu-
tion and three kinds of deformable convolutions all achieve their
summits as image resolution is 500. However, in the case of eval
OS 16, the curves become smoother from 400 to 700 than that of
eval OS 8. In addition, in two cases of eval OS, the models using
deformable convolutions outperform that using regular convolu-
tion, which advocates the effectiveness of enhancing geometric
transformation by deformable convolution. Compared with other
curves, the curve of our adaptive deformable convolution achieves
the best performance in various image resolutions.

Higher-level Input: We use ResNet50, ResNet101, DRN [52] as
backbone of Deformable ConvNet where deformable convolution is
inserted in feature aggregation. Table 3 shows that deformable
Fig. 4. Ablation study on various image resolutions. For each kind of deformable
convolutions, three convolutions are added in ResNet101. The results are reported
on PASCAL VOC 2012 val set.
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convolution does depend on high-level input. The average margin
between using ResNet50 and ResNet101 is about 2.5%, while the
average gap between using DRN and ResNet101 is just about
0.4%. Though deformable convolution could work better depended
on high-level feature input, the performance of deformable convo-
lution may not further improve too much by too sophisticated
backbone.
6. Experiments

In this section, we insert our adaptive deformable modules into
existing state-of-the-art models [20,45,50,48,51], in the fields of
semantic segmentation and object detection.

6.1. Adaptive deformable ConvNet for semantic segmentation

To verify the effectiveness of our method, we add our deform-
able convolution into existing methods, such as DeepLabv2 [48],
DenseASPP [49] and DeepLabv3 [14]. We use adaptive deformable
convolution in backbone and feature aggregation. For details, in the
fifth stage of ResNet, each 3� 3 regular convolution in residual
blocks, which are denoted as res5a, res5b and res5c sequentially,
is replaced by a 3� 3 deformable convolution. In the feature aggre-
gation part, we keep the basic structures of ASPP, DenseASPP, etc.,
and then replace all 3� 3 regular convolutions of them with 3� 3
deformable convolutions. The difference of designing semantic
networks of using our adaptive deformable convolution with that
using previous works can be summarized as threefold: First, con-
sidering that deformable convolutions work better on high-level
feature map, we choose to insert deformable convolution into fea-
ture aggregation, instead of placing it in the low-level stage of
backbone. Second, the sensitivity of deformable convolution with
different connection types is examined. Different from only using
residual connection in previous works, leveraging effective connec-
tion to reinforce the geometric modeling ability may be more opti-
mal, especially in flexible feature aggregation, which also indicates
the general ability of convolutional function. Third, we focus on
balancing the additional cost and reinforced deformable modeling
ability. Comparing with standard and modulated deformable con-
volutions, our adaptive convolution effectively improves its
convolution-wise geometric ability by inter-module connection
with trivial extra cost. The positions of deformable convolutions
at high level stage also enable each convolution to proceed low-
resolution feature map, costing relative less memory. As illustrated
in Table 4, this organization could further enhance the deformable
modeling ability. In all models with ResNet50 or ResNet101, using
adaptive deformable convolutions could gain more 1.5% improve-
ment than the same original models. Besides, we compare our
methods with some strong baseline models, i.e., DANet [28],
EncNet [53] and Dilated FCN [54]. As shown in Table 5, the perfor-
mance of our refined methods from classical models, e.g., Den-
seASPP, are comparable to that of current powerful baseline
models.

We visualize the effective sampling locations in Fig. 5. The
points of adaptive deformable convolution surround the activation
unit (green point) and model of that concentrates more on the rel-
evant content. The visual results of deformable ASPP on PASCAL
VOC 2012 and Cityscapes are shown in Fig. 6 and Fig. 7, which indi-
cates the outstanding qualitative performance of the proposed
adaptive deformable convolution.

6.2. Adaptive deformable ConvNet for object detection

We incorporate our adaptive deformable modules and previous
deformable modules into existing object detection models which



Table 3
The performance (mIoU, %) of using higher level feature as input. All backbones use regular convolutions. Experiments are conducted on PASCAL VOC 2012 validation set.

Backbone Deformable stack residual Deformable ASPP Deformable DenseASPP

s-dconv m-dconv a-dconv s-dconv m-dconv a-dconv s-dconv m-dconv a-dconv

ResNet50 74.56 74.97 75.68 75.26 75.37 76.08 72.87 72.45 75.04
ResNet101 77.39 77.83 78.06 78.23 78.22 78.70 75.65 75.42 77.82
DRN-D-105 [52] 77.80 78.05 78.43 78.43 78.39 78.92 76.02 75.90 78.12

Table 4
The results (mIoU, %) of Adaptive Deformable ConvNets for semantic segmentation on
PASCAL VOC 2012 validation set. ‘dcn’ indicates the deformable convolution, and ‘a-
dcn’ indicates our adaptive deformable convolution.

Method Backbone w/o dcn With a-dcn

DeepLabv2 ResNet50 72.37 74.65
DeepLabv2 ResNet101 74.30 76.21
DenseASPP ResNet50 75.66 77.02
enseASPP ResNet101 77.35 78.96
DeepLabv3 ResNet101 78.08 79.04

Table 5
Performance comparison of our methods with
strong baselines on PASCAL VOC 2012 validation
set.

Baseline mIoU (%)

Dilated FCN 77.3
DANet (PAM + CAM) 79.0
EncNet (Encoding + SE-loss) 78.4
Deformable DenseASPP (ours) 79.0
Deformable DeepLabv3 (ours) 79.1
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have achieved state-of-the-art performance. Each 3� 3 regular
convolution in the fifth stage of ResNet is replaced as the setting
in semantic segmentation, and the RoIplooing is replaced by
deformable RoIpooling. Because of additional cost of adding more
convolutions in backbone and strict structure of the detection net-
works, we follow the same designing strategy as previous works
[9,10]. As shown in Table 6–8 in Appendix, the enhanced adaptive
deformable modeling is examined. First, we provide baseline for
Faster R-CNN [20], Mask R-CNN [45] and Cascade Mask R-CNN
[50]. The results of the baseline model using setting of aligned
Fig. 5. The visualization of effective sampling locations. Each triplet of images denotes
respectively, with using deformable convolution@conv3-conv5. The images in second ro
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RoIpooling [9] are 34.7% AP score for Faster R-CNN. The same set-
ting achieves APbbox/APmask scores of 40.4%/35.3% for Mask R-CNN
and APbbox/APmask scores of 42.3%/36.3% for Cascade Mask R-CNN.
Whenmore regular convolutions are replaced by deformable coun-
terparts, i.e., dconv@c3-c5, all these three models obtain 2% to 3%
improvement. Besides, we make a comparison between original,
modulated and adaptive deformable convolutions. In the same set-
ting of replacing three counterparts from c3 to c5, the networks
using our adaptive deformable convolution perform better than
those using original and modulated deformable convolutions. In
addition, the experiment also indicates the usefulness of adaptive
deformable RoIpooling that we propose. The setting of three adap-
tive deformable convolution and RoIpooling leads to the highest
score in three networks. The AP score of Faster R-CNN [20] is
41.7% which is about 7% higher than the baseline model. This
improvement represents in other two networks with 7.4% APbbox

improvement and 5.7% APmask improvement on Mask R-CNN, and
with 6.2% APbbox improvement and 5.6% APmask improvement on
Cascade Mask R-CNN. Besides, in the second row of Fig. 5, effective
sampling points of our method could focus more on target, which
indicates its superiority.
6.3. Computational efficiency

We further assess the computational efficiency of adaptive
deformable convolution. First, we analyze the spatial property,
implementation cost and complexity of regular convolution,
dynamic convolution and three kinds of deformable convolutions,
as shown in Table 6. Compared with the implementation cost of
standard and modulated deformable convolutions, adaptive
deformable convolution only adds trivial cost which could be
ignored. And our adaptive deformable convolution owns spare
and global spatial property whose complexity is same as regular
convolution, s-dcn and m-dcn.
the spatial support of the method using standard, modulated or adaptive modules
w are produced by the methods which use corresponding deformable RoIpooling.



Fig. 6. Qualitative results of deformable DeepLabv3 on PASCAL VOC 2012. Three rows denote the original image, prediction of deformable DeepLabv3 and ground truth
respectively.

Fig. 7. Qualitative results of deformable DeepLabv3 on Cityscapes.

Table 6
The computational efficiency of regular convolution, dynamic convolution and three
kinds of deformable convolutions. Ns is the number of spatial elements, i.e., width by
height for image; C is the channel representation dimension; Nk is the kernel size; Ng

denotes the number of feature groups in dynamic attention; Nm is the kernel size of
separate convolution in deformable convolution.

Convolution Spatial
property

Implantation Complexity
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Furthermore, Table 7 shows the comparison of FLOPs and mem-
ory cost of A-DCN and previous works. The experiments are made
on semantic segmentation and object detection tasks. Dense ASPP
and DeepLabv2 use the same setting as Table 4. Faster RCNN and
Mask RCNN use the same setting (adconv@(c3-c5 + adpool)) as
Table 8. It is obvious that A-DCN would improve the original per-
formance with trivial extra cost.
Regular convolution Spare, local

NkC
2 OðN2

s C
2NkÞ Dynamic

convolution
Spare, local – OðNsCNgNk þ NsC

2Þ
s-dcn Spare,

global
NkC

2 þ 2NkNmC OðN2
s C

2NkÞ

m-dcn Spare,
global

NkC
2 þ 3NkNmC OðN2

s C
2NkÞ

a-dcn Spare,
global

NkC
2 þ 3NkNmC þ ffiffiffiffiffiffi

Nk

p
NmC OðN2

s C
2NkÞ
7. Conclusion

In this work, we propose new deformable convolutional net-
works which achieve obvious improvement comparing to their
original networks. A new adaptive deformable convolution and
RoIpooling further enhance the geometric modeling ability by con-
necting the spatial positions between spatial attention and channel
attention. Besides, we delve the factors that influence the enriched
861



Table 7
Comparison of inference time and memory of standard, modulated, adaptive deformable convolutions.

Model Inference time (fps) Memory(GB)

s-dcn m-dcn a-dcn s-dcn m-dcn a-dcn

Dense ASPP 5.4 5.0 4.9 4.7 4.9 4.9
DeepLabv2 8.4 7.8 7.6 4.2 4.3 4.3
Faster RCNN 9.6 9.3 9.2 3.9 3.7 4.0
Mask RCNN 7.0 6.9 6.6 4.5 4.5 4.6

Table 8
Ablation study (AP, %) on enriched deformable modeling. ‘dconv’, ‘mdconv’ and ‘adconv’ represent standard, modulated, adaptive deformable convolutions. ‘dpool’, ‘mdpool’ and
‘adpool’ denote standard, modulated, adaptive deformable RoIpooling. Besides, ‘@(c3-c5)’ stands for that the positions of deformable convolutions are at stages conv3 to conv5.

Method Setting Faster R-CNN Mask R-CNN Cascade Mask R-CNN

AP APbbox APmask APbbox APmask

Baseline Regular (RoIpooling) 32.0 - - - -
Regular (aligned RoIpooling) 34.7 36.6 32.2 38.4 32.4
dconv@(c5) + dpool(DCNv1) 38.0 40.4 35.3 42.3 36.3

Enahanced deformation dcnv@(c5) 37.2 39.9 35.0 42.2 36.3
dconv@(c4-c5) 39.8 41.5 35.7 43.1 36.8
dconv@(c3-c5) 40.0 41.7 36.4 44.0 37.6
dconv@(c3-c5)+dpool 40.6 42.0 36.5 44.3 38.1
mdconv@(c3-c5) 40.3 42.6 36.9 44.2 37.0
mdconv@(c3-c5)+mdpool(DCNv2) 41.0 43.1 37.0 44.5 38.0
adconv@(c3-c5) 40.8 43.2 37.3 44.4 37.8
adconv@(c3-c5)+adpool 41.7 44.0 37.9 44.6 38.0
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deformation on semantic segmentation, including connection type,
adding more deformable convolutions, image resolution and
higher-level input. All these experiments covering three kinds of
deformable convolutions give a comprehensive understanding for
designing Deformable ConvNets. Following these understanding,
we propose Adaptive Deformable ConvNets for semantic segmen-
tation that improve the original performance with a large margin.
In addition, to verify the effectiveness of our deformable modules,
we insert them into existing models, e.g., Faster R-CNN, and these
models also outperform the original models.

For future work, we notice that even with a learnable convolu-
tion, the optimization of the larger step in offset decomposition is
under the indirect restriction of the whole offset and modulation.
We believe a clearer and straightforward constraint of modeling
inter-module correlation for this larger step is necessary, to ensure
the step to consist with the true distance of a group of points to the
center.
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