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Single-image super-resolution (SISR) is an important task in image processing, which aims to enhance the

resolution of imaging systems. Recently, SISR has made a huge leap and has achieved promising results

with the help of deep learning (DL). In this survey, we give an overview of DL-based SISR methods and

group them according to their design targets. Specifically, we first introduce the problem definition, research

background, and the significance of SISR. Secondly, we introduce some related works, including benchmark

datasets, upsampling methods, optimization objectives, and image quality assessment methods. Thirdly, we

provide a detailed investigation of SISR and give some domain-specific applications of it. Fourthly, we present

the reconstruction results of some classic SISR methods to intuitively know their performance. Finally, we

discuss some issues that still exist in SISR and summarize some new trends and future directions. This is

an exhaustive survey of SISR, which can help researchers better understand SISR and inspire more exciting

research in this field. An investigation project for SISR is provided at https://github.com/CV-JunchengLi/SISR-

Survey.
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1 INTRODUCTION

Image super-resolution (SR), especially single-image super-resolution (SISR), is one kind of
image transformation task and has received increasing attention in academia and industry. As
shown in Figure 1, SISR aims to reconstruct a high-resolution (HR) image from its degraded
low-resolution (LR) one. It is widely used in various computer vision applications, including
security and surveillance images, medical image reconstruction, video enhancement, and image
segmentation.

Many SISR methods have been studied long before, such as bicubic interpolation and Lanczos re-
sampling [42], which are based on interpolation. However, SISR is an inherently ill-posed problem,
and multiple HR images corresponding to the same LR image always exist. To solve this issue, some
numerical methods (e.g., edge-based methods [77] and image statistics-based methods [85]) utilize
prior information to restrict the solution space. Meanwhile, there are some widely used learning-
based methods, such as neighbor embedding methods [18] and sparse coding methods [202], which
learn a transformation between LR and HR patches.

Recently, deep learning (DL) [90] has demonstrated better performance than traditional ma-
chine learning models in many artificial intelligence fields, including computer vision [86] and nat-
ural language processing [31]. With the rapid development of DL techniques, numerous DL-based
methods have been proposed for SISR, continuously prompting the State-Of-The-Art (SOTA)
forward. Like other image transformation tasks, the SISR task can generally be divided into three
steps: feature extraction and representation, non-linear mapping, and image reconstruction [38].
In traditional numerical models, it is time-consuming and inefficient to design an algorithm satis-
fying all these processes. On the contrary, DL can transfer the SISR task to an almost end-to-end
framework incorporating all these three processes, which can greatly decrease manual and com-
puting expenses [40]. Additionally, given the ill-posed nature of SISR which can lead to unstable
and hard convergence on the results, DL can alleviate this issue through efficient network ar-
chitecture and loss functions design. Moreover, modern GPU enables deeper and more complex
DL models to train fast, which shows greater representation power than traditional numerical
models.

It is well known that DL-based methods can be divided into supervised and unsupervised meth-
ods. This is the simplest classification criterion, but the range of this classification criterion is too
large and not clear. As a result, many technically unrelated methods may be classified into the
same type while methods with similar strategies may be classified into completely different types.
Different from previous SISR surveys [6, 190] that use supervision as the classification criterion
or introduce the methods in a pure literature way, in this survey, we attempt to give a compre-
hensive overview of DL-based image SR methods and categorize them according to their specific
targets. In Figure 2, we show the content and taxonomy of this survey. We divide these methods
into three categories: Simulation SISR, Real-World SISR, and Domain-Specific Applications. Addi-
tionally, we divide Simulation SISR methods into three categories: Efficient Network / Mechanism
Design Methods, Perceptual Quality Methods, and Additional Information Utilization Methods,
according to their specific targets. This target-based survey has a clear context hence it is conve-
nient for readers to consult. Specifically, in this survey, we first introduce the problem definition,
research background, and significance of SISR. Then, we introduce some related works, including
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Fig. 1. SISR aims to reconstruct a HR image from its degraded LR one.

benchmark datasets, upsample methods, optimization objectives, and assessment methods. After
that, we provide a detailed investigation of SISR methods and provide the reconstruction results
of them. Finally, we discuss some issues that still exist in SISR and provide some new trends and
future directions. Overall, the main contributions of this survey are as follows:

(1) We give a thorough overview of DL-based SISR methods according to their targets. This is
a new perspective that makes the survey clear in context and convenient.

(2) This survey covers more than 100 SR methods and introduces a series of new tasks and
domain-specific applications extended by SISR in recent years.

(3) We provide a detailed comparison of reconstruction results, including classic, latest, and
SOTA SISR methods, to help readers intuitively know their performance.

(4) We discuss some issues that still exist in SISR and look forward to the future trend and
direction of SR.

2 PROBLEM SETTING AND RELATED WORKS

2.1 Problem Definition

Image SR is a classic technique to improve the resolution of an imaging system, which can be
classified into SISR and multi-image super-resolution (MISR) according to the number of input
LR images. Compared with MISR, SISR is much more challenging since MISR has extra information
for reference while SISR only has information of a single input image for the missing image features
reconstruction.

Define the LR image as Ix ∈ Rh×w and the ground-truth HR image as Iy ∈ RH×W , where H > h
andW > w . Typically, in an SISR framework, the LR image Ix is modeled as Ix = D(Iy ;θD), where

D is a degradation map RH×W → Rh×w and θD denotes the degradation factor. In most cases, the
degradation process is unknown. Therefore, researchers are trying to model it. The most popular
degradation mode is

D(Iy ;θD) = (Iy ⊗ κ) ↓s +n, (1)

where Iy ⊗ κ represents the convolution between the blur kernel κ and the HR image Iy , ↓s is
a subsequent downsampling operation with scale factor s , and n is usually the additive white

Gaussian noise (AWGN) with standard deviation σ . In the SISR task, we need to recover an SR
image ISR from the LR image Ix . Therefore, the task can be formulated as ISR = F (Ix ;θF), where
F is the SR algorithm and θF is the parameter set of the SR process.

Recently, researchers have converted the SISR into an end-to-end learning task, relying on mas-
sive training data and effective loss functions. Meanwhile, more and more DL-based models have
been proposed due to the powerful representation power of CNN and its convenience in both
forward and backward computing. Therefore, SISR task can be transformed into the following
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Fig. 2. The content and taxonomy of this survey. In this survey, we divide image SR methods into three

categories: Simulation SISR, Real-World SISR, and Domain-Specific Applications.

optimization goal:

θ̂F = arg min
θF

L(ISR , Iy ) + λΦ(θ ), (2)

where L denotes the loss function between the generated SR image ISR and the HR image Iy , Φ(θ )
denotes the regularization term, and λ is the tradeoff parameter that is used to control the weight
of the regularization term.

2.2 Benchmark Datasets

Data is always essential for data-driven models, especially in the DL-based SISR models, to
achieve promising reconstruction performance (Figure 3). Nowadays, industry and academia have
launched several available datasets for SISR.

2.2.1 Degradation Mode. Due to the particularity of the SISR task, it is difficult to construct a
large-scale paired real SR dataset. Therefore, researchers often apply degradation patterns on the
aforementioned datasets to obtain corresponding degraded images to construct paired datasets.
However, images in the real world are easily disturbed by various factors (e.g., sensor noise, motion
blur, and compression artifacts), resulting in the captured images being more complex than the
simulated ones. To alleviate these problems and train a more effective and general SISR model,
some works model the degradation mode as a combination of several operations (Equation (1)).
Based on this degradation formula, the three most widely used degradation modes have been
proposed: BI, BD, and DN. Among them, BI is the most widely used degraded mode to simulate
LR images, which is essentially a bicubic downsampling operation. For BD, the HR images are
blurred by a Gaussian kernel of size 7× 7 with standard deviation 1.6 and then downsampled with
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Fig. 3. The training process of data-driven based deep neural networks.

Table 1. Benchmarks Datasets for SISR

Name Usage Amount Format Description

General-100 [39] Train 100 BMP Common images with clear edges but fewer smooth regions

T91 [202] Train 91 PNG Common Images

WED [127] Train 4744 MAT Common images

Flickr2K [160] Train 2650 PNG 2K images from Flickr

FFHQ [82] Train 70000 PNG A high-quality image dataset of human faces

CelebA-HQ [92] Train/Val 30000 PNG A GAN Synthetic data of human faces

CelebA [118] Train/Val 202600 JPG a large-scale face attributes dataset

DRealSR [194] Train/Val 31970 PNG a benchmark with diverse real-world degradation processes

DIV2K [2] Train/Val 1000 PNG High-quality dataset for CVPR NTIRE competition

BSDS300 [130] Train/Val 300 JPG Common images

BSDS500 [7] Train/Val 500 JPG Common images

RealSR [12] Train/Val 100 PNG 100 real-world low and high resolution image pairs

OutdoorScene [176] Train/Val 10624 PNG Images of outdoor scenes

City100 [20] Train/Test 100 RAW Common images

Flickr1024 [184] Train/Test 100 RAW Stereo images used for Stereo SR

SR-RAW [230] Train/Test 7*500 JPG/ARW Raw images produced by real-world computational zoom

PIPAL [79] Test 200 PNG Perceptual image quality assessment dataset

Set5 [8] Test 5 PNG Common images, only 5 images

Set14 [214] Test 14 PNG Common images, only 14 images

BSD100 [130] Test 100 JPG A subset of BSDS500 for testing

Urban100 [73] Test 100 PNG Images of real-world structures

Manga109 [46] Test 109 PNG Japanese manga

L20 [161] Test 20 PNG Common images, very high-resolution

PIRM [9] Test 200 PNG Common images, datasets for ECCV PIRM competition

a scaling factor of 3. To obtain LR images under DN mode, the Bicubic downsampling is performed
on the HR image with a scaling factor of 3, and then the Gaussian noise with a noise level of 30 is
added to the image.

2.2.2 Training and Test Datasets. Recently, many datasets for the SISR task have been pro-
posed, including BSDS300 [130], DIV2K [2], and Flickr2K [160]. Meanwhile, there are also many
test datasets that can be used to effectively test the performance of the models, such as Set5 [8],
Set14 [214], Urban100 [73], and Manga109 [46]. In Table 1, we list a series of commonly used
datasets and indicate their detailed attribute.

Among these datasets, DIV2K [2] is the most widely used dataset for model training, which is a
high-quality dataset that contains 800 training images, 100 validation images, and 100 test images.
Flickr2k is a large extended dataset, which contains 2650 2K images from Flickr. RealSR [12] is the
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first truly collected real-world SISR dataset with paired LR and HR images. In addition to the listed
datasets, some datasets widely used in other computer vision tasks are also used as supplementary
training datasets for SISR, such as ImageNet [34] and CelebA [118]. In addition, combining multiple
datasets (e.g., DF2K) for training to further improve the model performance has been also widely
used.

2.3 Upsampling Methods

The purpose of SISR is to enlarge a smaller size image into a larger one and to keep it as accu-
rate as possible. Therefore, enlargement operation, also called upsampling, is an important step
in SISR. The current upsampling mechanisms can be divided into four types: pre-upsampling SR,
post-upsampling SR, progressive upsampling SR, and iterative up-and-down sampling SR. In this
section, we introduce several upsampling methods that support these upsampling mechanisms.

2.3.1 Interpolation Methods. Interpolation is the most widely used upsampling method. The
current mainstream of interpolation methods includes Nearest-neighbor Interpolation, Bilinear
Interpolation, and Bicubic Interpolation. Being highly interpretable and easy to implement, these
methods are still widely used today. Among them, Nearest-neighbor Interpolation is a simple
and intuitive algorithm that selects the nearest pixel value for each position to be interpolated,
which has fast execution time but has difficulty in producing high-quality results. Bilinear In-

terpolation sequentially performs linear interpolation operations on the two axes of the image.
This method can obtain better results than nearest-neighbor interpolation while maintaining a rel-
atively fast speed. Bicubic Interpolation performs cubic interpolation on each of the two axes.
Compared with Bilinear, the results of Bicubic are smoother with fewer artifacts but slower than
other interpolation methods. Interpolation is also the mainstream method for constructing SISR-
paired datasets and is widely used in the data pre-processing of DL-based SISR models.

2.3.2 Transposed Convolutional Layers. As shown in Figure 4(a), researchers usually consider
two kinds of transposed convolution operations: one adds padding around the input matrix and
then applies the convolution operation, and the other adds padding between the values of the
input matrix followed by the direct convolution operation. The latter is also called fractionally
strided convolution since it works like performing convolution with a sub-pixel level stride. In
the transposed convolutional layer, the upsampling level is controlled by the size of the padding,
which is essentially opposite to the operation of the normal convolutional layer. The transposed
convolutional layer is first proposed in FSRCNN [39] and is widely used in DL-based SISR models.

2.3.3 Sub-Pixel Convolutional Layer. In ESPCN [151], Shi et al. proposed an efficient sub-pixel
convolutional layer. Instead of increasing the resolution by directly increasing the number of LR
feature maps, sub-pixel first increases the dimension of LR feature maps, i.e., the number of the
LR feature maps, and then a periodic shuffling operator is used to rearrange these points in the
expanded feature maps to obtain the HR output (Figure 4(b)). In detail, the formulation of the
sub-pixel convolutional layer can be defined as follows:

ISR = f L(Ix ) = PS(WL ∗ f L−1(Ix ) + bL), (3)

where PS denotes the periodic shuffling operator, which transfers an h × w × C · r 2 tensor to a
tensor of shape rh × rw ×C , and rh × rw is explicitly the size of the HR image,C is the number of
channels. In addition, the convolutional filterWL has the shape nL−1 × r 2C ×KL ×KL , where nL is
the number of feature maps in the (L−1) layer. Compared with the transposed convolutional layer,
the sub-pixel convolutional layer exhibits better efficiency and thus is widely used in DL-based
SISR models.
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Fig. 4. Upsampling methods: (a) transposed convolutional layers (b) sub-pixel convolutional layer.

2.4 Optimization Objective

Evaluation and parameter up-gradation are the important steps in all DL-based models. In this
section, we will introduce the necessary procedures during the model training.

2.4.1 Learning Strategy. In this work, we use a common division method in the SR field, that is,
whether paired LR-HR images are used for model training. It is worth noting that the HR image
here refers to the additional introduced HR image, not the image itself. In addition, learning strat-
egy has no clear definitions in SISR. According to this criteria, the DL-based SISR models can be
mainly divided into supervised learning methods and unsupervised learning methods.

Supervised Learning: In SISR, we often call the method of using pairs of LR-HR images for
training a supervised learning paradigm. In simulated SISR, LR images are often obtained by down-
sampling HR images. In real SISR, LR images and HR images are obtained by adjusting the zoom
of the camera. In general, the LR and HR images of this type of method have a one-to-one corre-
spondence, and researchers compute the reconstruction error between the ground-truth image Iy
and the reconstructed image ISR :

θ̂F = arg min
θF

L(ISR , Iy ). (4)

Alternatively, researchers may sometimes search for a mapping Φ, such as a pre-trained neural
network, to transform the images or image feature maps to other space and then compute the
error:

θ̂F = arg min
θF

L(Φ(ISR ),Φ(Iy )). (5)

Among them, L is the loss function that is used to minimize the distance between the re-
constructed image and the ground-truth image. By using different loss functions, the model can
achieve different performance. Therefore, an effective loss function is also crucial for SISR.

Unsupervised Learning: The simulated paired images have poor versatility, while the real
paired images are difficult to collect. To address this issue, some methods began to try to no longer
use paired LR-HR images for training. We often call this type of method an unsupervised learn-
ing method. This type of unsupervised method no longer uses paired LR-HR images for training
but uses unpaired LR-HR images (GAN-based method) or itself (self-supervised learning method)
for training. For example, ZSSR [152] uses the test image and its downscaling versions with the
data augmentation approaches to build the "training dataset" and then applies the loss function
to optimize the model. In addition, weakly-supervised learning also belongs to the unsupervised
learning strategy. Among them, some researchers first learn the HR-to-LR degradation and use it
to construct datasets for training the model, while other researchers design cycle-in-cycle models
to learn the LR-to-HR and HR-to-LR mappings simultaneously. For instance, CinCGAN [210] con-
sists of two CycleGAN [238], where one cycle is adopted for translating between the real LR and
synthetic LR images while the other is used between the real LR and HR images.
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2.4.2 Loss Function. In the SISR task, the loss function is used to guide the iterative optimization
process of the model by computing some kind of error. Meanwhile, compared with a single loss
function, researchers find that combining multiple loss functions can better reflect the situation of
image restoration. In this section, we briefly introduce several commonly used loss functions.

Pixel Loss: Pixel loss is the simplest and most popular loss function in SISR, which aims to mea-
sure the difference between two images on a pixel basis so that these two images can converge as
close as possible. It mainly includes the L1 loss, Mean Square Error (MSE) Loss, and Charbonnier
loss (a differentiable variant of the L1 loss):

LL1(ISR , Iy ) =
1

hwc

∑
i, j,k

���I i, j,k
SR

− I i, j,k
y

��� , (6)

LMSE (ISR , Iy ) =
1

hwc

∑
i, j,k

(I i, j,k
SR

− I i, j,k
y )2, (7)

LChar (ISR , Iy ) =
1

hwc

∑
i, j,k

√
(I i, j,k

SR
− I i, j,k

y )2 + ϵ2, (8)

where h,w , and c are the height, width, and the number of channels of the image. ϵ is a numerical
stability constant, usually being set to 10−3. Since most mainstream image evaluation indicators
are highly correlated with pixel-by-pixel differences, pixel loss is still widely used. However, the
images reconstructed by this type of loss function usually lack high-frequency details and thus
perform inferior in visual effects.

Content Loss: Content loss is also termed perceptual loss, which uses a pre-trained classifica-
tion network to measure the semantic difference between images, and can be further expressed as
the Euclidean distance between the high-level representations of these two images:

LCont (ISR , Iy ,ϕ) =
1

hlwlcl

∑
i, j,k

(ϕi, j,k
(l )

(ISR ) − ϕi, j,k
(l )

(Iy )), (9)

where ϕ represents the pre-trained classification network and ϕ(l )(IHQ ) represents the high-level
representation extracted from the l layer of the network. hl , wl , and cl are the height, width, and
the number of channels of the feature map in the lth layer, respectively. By using this loss, the
visual effects of these two images can be as consistent as possible. Among them, VGG [153] and
ResNet [91] are the most commonly used pre-training classification networks.

Adversarial Loss: To make the reconstructed SR image more realistic, Generative Adversar-

ial Networks (GANs [56]) have been introduced into the SISR task. Specifically, GAN is composed
of a generator and a discriminator. The generator is responsible for generating fake samples, and
the discriminator is used to determine the authenticity of the generated samples. For example, the
discriminative loss function based on cross-entropy is proposed by SRGAN [91]:

LAdversar ial (Ix ,G,D) =
N∑

n=1

−loдD(G(Ix )), (10)

whereG(ILQ ) is the reconstructed SR image,G and D represent the Generator and the Discrimina-
tor, respectively.

Prior Loss: Apart from the above loss functions, some prior knowledge can also be introduced
into SISR models to participate in high-quality image reconstruction, such as sparse prior, gradient
prior, and edge prior. Among them, gradient prior loss and edge prior loss are the most widely used
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prior loss functions, which are defined as follows:

LTV (ISR ) =
1

hwc

∑
i, j,k

√(
I
i, j+1,k
SR

− I
i, j,k
y

)2
+
(
I
i+1, j,k
SR

− I
i, j,k
y

)2
, (11)

LEdдe (ISR , Iy ,E) =
1

hwc

∑
i, j,k

���E (
I i, j,k
SR

)
− E

(
I i, j,k
y

)��� , (12)

where E is the image edge detector, and E(I i, j,k
SR

) and E(I i, j,k
y ) are the image edges extracted by

the detector. The purpose of the prior loss is to optimize some specific information of the image
toward the expected target so that the model can converge faster and the reconstructed image will
contain more texture details.

Fourier Space Loss: The design of perceptual losses predominantly focuses on the spatial do-
main. However, SR is tightly coupled to the frequency domain, as only high frequencies are re-
moved during the downsampling process. To solve this problem, Fuoli et al. [47] propose a novel
Fourier Space Loss by calculating the frequency components with the Fast Fourier Transform

(FFT) for direct emphasis on the frequency content. Firstly, the image is transformed into Fourier
space by applying the FFT. Then, the method calculates the amplitude difference Ff , |.| and phase
difference, ∠ of all frequency components between output image and ground truth image. The
averaged differences are computed as the total frequency loss as follows:

Lf , |.| =
2

UV

U /2−1∑
u=0

V−1∑
v=0

�� | Ŷ |u,v − | Y |u,v
��, (13)

Lf , ∠ =
2

UV

U /2−1∑
u=0

V−1∑
v=0

��∠Ŷu,v − ∠Yu,v

��, (14)

Lf =
1

2
Lf , |.| +

1

2
Lf , ∠, (15)

where Ŷu,v represents the spectrum of the recovered image, and Yu,v represents the spectrum of
the ground truth image.

Mixed Loss: In SISR, there are also some classic combinations of loss functions that are widely
used to guide the network toward generating high-quality HR images. These combinations aim to
balance the quality, details, and visual perception of the generated image. Here are some commonly
used classic combinations of loss functions.

L1 + Perceptual Loss: combining L1 loss with perceptual loss, such as the feature loss based
on VGG networks, can generate images that are clearer and have better details. This combination
can effectively reduce noise and distortion in the image; L1 + TV Loss: combining L1 loss with
total variation (TV) loss can generate images with good edge and texture details. TV loss helps
to reduce blocky artifacts in the image; Content Loss + Adaptive Loss: combining Content loss
with adaptive loss can generate images with better visual coherence. Adaptive loss can adjust the
loss weights based on the content of the image.

The choice of loss function combinations depends on the specific requirements of the SISR task,
such as the desired balance between perceptual quality and computational efficiency. In practi-
cal applications, researchers may adjust the weights of the loss functions based on experimental
results to find the combination that best suits a specific task.

2.5 Assessment Methods

The image quality assessment (IQA) can be generally divided into objective methods and sub-
jective methods. Objective methods commonly use a specific formulation to compute the results,
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which are simple and fair, thus becoming the mainstream assessment method in SISR. However,
they can only reflect the recovery of image pixels from a numerical point of view and are diffi-
cult to accurately measure the true visual effect of the image. In contrast, subjective methods are
always based on human subjective judgments and are more related to evaluating the perceptual
quality of the image. Based on the pros and cons of the two types of methods mentioned above,
several assessment methods are briefly introduced in the following with respect to the aspects of
image reconstruction accuracy, image perceptual quality, and reconstruction efficiency.

2.5.1 Image Reconstruction Accuracy. The assessment methods used for image reconstruction
accuracy evaluation are also called Distortion measures, which are full-reference. Specifically, given
a distorted image x̂ and a ground-truth reference image x , full-reference distortion quantifies the
quality of x̂ by measuring its discrepancy to x [10] using different algorithms.

Peak Signal-to-Noise Ratio (PSNR): PSNR is the most widely used IQA method in the SISR
field, which can be easily defined via the MSE between the ground truth image Iy ∈ RH×W and

the reconstructed image ISR ∈ RH×W :

MSE =
1

HW

H−1∑
i=0

W −1∑
j=0

(Iy (i, j) − ISR (i, j))
2, (16)

PSNR = 10 · log10

(
MAX 2

MSE

)
, (17)

where MAX is the maximum possible pixel of the image. Since PSNR is highly related to MSE,
a model trained with the MSE loss will be expected to have high PSNR scores. Although higher
PSNR generally indicates that the construction is of higher quality, it just considers the per-pixel
MSE, which makes it fail to capture the perceptual differences [188].

Structural Similarity Index Measure (SSIM): SSIM [189] is another popular assessment
method that measures the similarity between two images on a perceptual basis, including struc-
tures, luminance, and contrast. Different from PSNR, which calculates absolute pixel-level errors,
SSIM suggests that there exist strong inter-dependencies among the spatially adjacent pixels.
These dependencies carry important information related to the structures perceptually. Therefore,
the SSIM can be expressed as a weighted combination of three comparative measures:

SSIM(ISR , Iy ) = (l(ISR , iy )
α · c(ISR , Iy )

β · s(ISR , Iy )
γ )

=
(2μIS R

μIy
+ c1)(2σIS R Iy

+ c2)

(μ2
IS R
+ μ2

Iy
+ c1)(σ

2
IS R
+ σ 2

Iy
+ c2)

,
(18)

where l , c , and s represent luminance, contrast, and structure between ISR and Iy , respectively.

μIS R
, μIy

, σ 2
IS R

, σ 2
Iy

, and σIS R Iy
are the average value, variance, and covariance of the corresponding

items, respectively.
A higher SSIM indicates higher similarity between two images, which has been widely used due

to its convenience and stable performance in evaluating perceptual quality. In addition, there are
also some variants of SSIM, such as Multi-Scale SSIM, which is conducted over multiple scales by
a process of multiple stages of subsampling.

2.5.2 Image Perceptual Quality. Since the visual system of humans is complex and concerns
many aspects to judge the differences between two images, i.e., the textures and flow inside the
images, methods that pursue absolutely similar differences (PSNR/SSIM) will not always perform
well. Although distortion measures have been widely used, the improvement in reconstruction
accuracy is not always accompanied by an improvement in visual quality. In fact, researchers have
shown that the distortion and perceptual quality are at odds with each other in some cases [10].
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The image perceptual quality of an image x̂ is defined as the degree to which it looks like a natural
image, which has nothing to do with its similarity to any reference image.

Mean Opinion Score (MOS): MOS is a subjective method that can straightforwardly evaluate
perceptual quality. Specifically, several volunteers rate their opinions on the quality of a set of
images by Double-stimulus [135], i.e., every volunteer has both the source and test images. After
all the volunteers finish ratings, the results are mapped onto numerical values, and the average
scores will be the final MOS. MOS is a time-consuming and expensive method since it requires
manual participation. Meanwhile, MOS is also doubted to be unstable, since the MOS differences
may be not noticeable to the users. Moreover, this method is too subjective to guarantee fairness.

Learned Perceptual Image Patch Similarity (LPIPS): LPIPS [220] is a popular metric used
to measure the perceived differences between differnet images, which not only focuses on the
structure and content of an image but also reflects the sensitivity of the human eye to image
differences. Specifically, the feature layers of different images are first extracted using a pre-trained
model(e.g., VGG [153]), and then the LPIPS value can be obtained by calculating the weighted
summed distance between the different feature spaces:

LPIPS(ISR , Iy ) =
N∑

l=1



ωl .
(
ϕl (ISR ) ,ϕl

(
Iy
) )



2
, (19)

where l is the lth feature layer of the pre-trained model, N is the total number of feature layers of
the pre-trained model, ωl is the weight used to weigh the lth feature layers, ϕl is the lth feature
extraction layer in the pre-trained model, and ‖‖2 is the L2 paradigms. However, LPIPS is obtained
by learning from DL models, so its performance is affected by the training data, leading to the fact
that LPIPS may lack generalization ability in some cases.

Deep Image Structure and Texture Similarity (DISTS): DISTS [36] is the first complete
reference image quality model that explicitly tolerates texture resampling, and it utilizes injec-
tive differentiable functions constructed from CNN to convert images to a multi-scale hyper-
complete representation, a representation in which the spatial average of the feature maps captures
the texture appearance and matches human ratings of image quality.

l(I (i)
SR
, I (i)y ) =

2μ(i)
IS R

μ(i)
Iy
+ c1

(μ(i)
IS R

)
2
+ (μ(i)

Iy
)
2
+ c1

, (20)

s(I (i)
SR
, I (i)y ) =

2σ (i)
IS R Iy

+ c2

(σ (i)
IS R

)
2
+ (σ (i)

Iy
)
2
+ c2

, (21)

DISTS(ISR , Iy ,α , β) = 1 −

m∑
i=0

ni∑
j=1

(
αi jl

(
I (i)
SR
, I (i)y

)
+ βi js

(
I (i)
SR
, I (i)y

))
, (22)

where μ(i)
IS R

, μ(i)
Iy

, σ (i)
IS R

, σ (i)
Iy

and σ (i)
IS R Iy

denote average value and variances of I (i)
SR

and I (i)y , and covari-

ance between I (i)
SR

and I (i)y , respectively. c1 and c2 are two small positive constants. And {αi j , βi j }

are learnable weights, satisfying
∑m

i=0

∑ nj

j=1(αi j + βi j ) = 1. And despite its beneficial mathematical

properties, the DISTS metric is still highly non-convex and therefore requires more iterations to
recover from random noise using stochastic gradient descent methods than metrics such as SSIM.

Natural Image Quality Evaluator (NIQE): NIQE [136] is a completely blind IQA method.
Without the requirement of knowledge about anticipated distortions in the form of training ex-
amples and corresponding human opinion scores, NIQE only makes use of measurable deviations
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from statistical regularities observed in natural images. It extracts a set of local features from
images based on a natural scene statistic (NSS) model, then fits the feature vectors to a mul-

tivariate Gaussian (MVG) model. The quality of a test image is then predicted by the distance
between its MVG model and the MVG model learned from a natural image:

D(ν1,ν2, Σ1, Σ2) =

√
((ν1 − ν2)T

(
Σ1 + Σ2

2

)−1

(ν1 − ν2)), (23)

where ν1, ν2, and Σ1, Σ2 are the mean vectors and covariance matrices of the HR and SR image’s
MVG model, respectively. Notice that, a higher NQIE index indicates lower image perceptual qual-
ity. Compared with MOS, NIQE is a more convenient perceptual evaluation method.

Ma: Ma et al. [126] proposed a learning-based no-reference IQA. It is designed to focus on SR
images, while other learning-based methods are applied to images degraded by noise, compression,
or fast fading rather than SR images. It learns from perceptual scores based on human subject stud-
ies involving a large number of SR images. Then, it quantifies the SR artifacts through three types
of statistical properties, i.e., local/global frequency variations and spatial discontinuity. Afterward,
these features are modeled by three independent learnable regression forests, respectively, to fit
the perceptual scores of SR images, ŷn(n = 1, 2, 3). The final predicted quality score is ŷ =

∑
n λn ·ŷn ,

and the weight λ is learned by minimizing λ∗ = arg minλ(
∑

n λn · ŷn − y)2.
Ma performs well on matching the perceptual scores of SR images but is still limited as compared

with other learning-based no-reference methods since it can only assess the quality degradation
arising from the distortion types on which they have been trained.

Perception Index (PI): In the 2018 PIRM Challenge on Perceptual Image SR [9], PI is first
proposed to evaluate perceptual quality. It is a combination of the no-reference image quality
measures Ma and NIQE:

PI =
1

2
((10 −Ma) + NIQE). (24)

A lower PI indicates better perceptual quality. This is a new image quality evaluation standard,
which has been greatly promoted and used in recent years.

Apart from the aforementioned evaluation methods, some new methods have also been pro-
posed over these years. For example, Zhang et al. [221] proposed Ranker to learn the ranking or-
ders of NR-IQA methods (i.e., NIQE) on the results of some perceptual SR models. Zhang et al. [220]
introduced a new dataset of human perceptual similarity judgments. Meanwhile, a perceptual eval-
uation metric, LPIPS, is constructed by learning the perceptual judgment in this dataset. Ramsauer
et al. [66] proposed Fréchet Inception Distance (FID), which quantifies the quality of SISR im-
ages by comparing the difference between the data distribution of SISR results and the true data
distribution. In summary, how to measure the perceptual quality of SR images more accurately
and efficiently is an important issue that needs to be explored.

3 IMAGE SUPER-RESOLUTION

In 2014, Dong et al. [38] proposed the Super-Resolution Convolutional Neural Network

(SRCNN). SRCNN is the first CNN-based SISR model. It shows that a deep CNN model is equiv-
alent to the sparse-coding-based method, which is an example-based method for SISR. Recently,
more and more SR models treat it as an end-to-end learning task. Therefore, building a deep neural
network to directly learn the mapping between LR and HR images has become the mainstream
method in SR. After that, CNN-based SR methods are blooming and constantly refreshing the best
results.

In this part, we divide DL-based image SR methods into three categories: Simulation SISR, Real-
World SISR, and Domain-Specific Applications.
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Fig. 5. Sketch of residual learning architecture / residual block.

3.1 Simulation SISR

In recent years, the field of SISR has developed rapidly, and a large number of excellent models have
emerged. However, it is worth noting that most of these models use simulated datasets for testing
and training, we call this method simulated SISR. In other words, the LR images used in this type
of method are usually obtained by applying some fixed degradation modes to the HR images. This
will affect the performance of the model in practical applications. However, it is undeniable that the
emergence of these methods has enriched and promoted the development of SISR. According to dif-
ferent design targets, we divide these methods into three categories: efficient network/mechanism
design methods, perceptual quality methods, and additional information utilization methods.

3.1.1 Efficient Network / Mechanism Design Methods. Most of the methods that have emerged
in recent years focus on efficient and accurate network structure and mechanism design, which
enable the model to achieve better performance with fewer parameters. In this section, we will
discuss some methods that contribute to efficient and accurate network design.

Residual Learning: In SRCNN, researchers find that better results can be obtained by adding
more convolutional layers to increase the receptive field. However, directly stacking the layers
will cause vanishing/exploding gradients and degradation problems [64]. Meanwhile, adding more
layers will lead to a higher training error and more expensive computational costs.

In ResNet [65], He et al. proposed a residual learning framework, where a residual mapping is
desired instead of fitting the whole underlying mapping (Figure 5). In SISR, as the LR image and
HR image share most of the same information, it is easy to explicitly model the residual image
between LR and HR images. Residual learning enables deeper networks and remits the problem of
gradient vanishing and degradation. With the help of residual learning, Kim et al. [83] proposed a
very deep SR network, also known as VDSR. For the convenience of network design, the residual
block [65] has gradually become the basic unit in the network structure. The convolutional branch,
usually has two 3 × 3 convolutional layers, two batch normalization layers, and one ReLU activa-
tion function in between. It is worth noting that the batch normalization layer is often removed
in the SISR task since Lim et al. [108] point out that the batch normalization layer consumes more
memory but will not improve the model performance.

Global and Local Residual Learning: Global residual learning is a skip-connection from input to
the final reconstruction layer, which helps improve the transmission of information from input to
output and reduces the loss of information to a certain extent. However, as the network becomes
deeper, a significant amount of image details are inevitably lost after going through so many lay-
ers. Therefore, local residual learning is proposed, which is performed in every few stacked layers
instead of from input to output. In this approach, a multi-path mode is formed and rich image
details are carried and also help gradient flow. Furthermore, many new feature extraction mod-
ules have introduced local residual learning to reinforce strong learning capabilities [98, 225]. Of
course, combining local residual learning and global residual learning is also highly popular now
[91, 108, 225].

Residual Scaling: In EDSR, Lim et al. [108] found that increasing the feature maps, i.e., channel
dimension, above a certain level would make the training procedure numerical unstable. To solve
such issues, they adopted the residual scaling technique [156], where the residuals are scaled down
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Fig. 6. The structure of the dense connection module.

by multiplying a constant between 0 and 1 before adding them to the main path. With the help of
this residual scaling method, the model performance can be further improved.

Dense Connection: A dense connection mechanism was proposed in DenseNet [72], which is
widely used in computer vision tasks in recent years. Different from the structure that only sends
the hierarchical features to the final reconstruction layer, each layer in the dense block receives
the features of all preceding layers (Figure 6). Short paths created between most of the layers can
help alleviate the problem of vanishing/exploding gradients and strengthen the deep information
flow through layers, thereby further improving the reconstruction accuracy.

Motivated by the dense connection mechanism, Tong et al. [162] proposed an SRDenseNet. SR-
DenseNet uses not only the layer-level dense connections but also the block-level ones, where
the output of each dense block is connected by dense connections. In this way, the low-level
features and high-level features are combined and fully used to conduct the reconstruction. In
RDN [228], dense connections are combined with the residual learning to form the residual dense

block (RDB), which allows low-frequency features to be bypassed through multiple skip connec-
tions, making the main branch focusing on learning high-frequency information. Apart from the
aforementioned models, the dense connection is also applied in MemNet [159], RPMNet [131],
MFNet [150], and so on. With the help of a dense connection mechanism, the information flow
among different depths of the network can be fully used, thus yielding better reconstruction
results.

Recursive Learning: To obtain a large receptive field without increasing model parameters,
recursive learning is proposed for SISR, where the same sub-modules are repetitively applied in
the network, and share the same parameters. In other words, a recursive block is a collection of
recursive units, where the corresponding structures among these recursive units share the same
parameters. For instance, the same convolutional layer is applied 16 times in DRCN [84], resulting
in a 41 × 41 size receptive field. However, too many stacked layers in the recursive learning-based
model will still cause the problem of vanishing/exploding gradient. Therefore, in DRRN [158], the
recursive block is conducted based on residual learning (Figure 7). Recently, more and more models
have introduced the residual learning strategy in their recursive units, such as MemNet [159],
CARN [3], and SRRFN [99].

Progressive Learning: Progressive learning refers to gradually increasing the difficulty of the
learning task. For some sequence prediction tasks or sequential decision-making problems, pro-
gressive learning is used to reduce the training time and improve the generalization performance.
Since SISR is an ill-posed problem that is always confronted with great learning difficulty due to
some adverse conditions such as large scaling factors, unknown degradation kernels, and noise, it
is suitable to utilize progressive learning to simplify the learning process and improve the recon-
struction efficiency.

In LapSRN [87], the method is applied to progressively reconstruct the sub-band residuals of
HR images. In ProSR [180], each level of the pyramid is gradually blended in to reduce the impact
on the previously trained layers, and the training pairs of each scale are incrementally added. In
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Fig. 7. The structure of DRRN, where the shaded part denotes the recursive block and the parameters in the

dashed box are sharing.

Fig. 8. The structure of multi-scale residual block (MSRB [98]).

SRFBN [106], the strategy is applied to solve the complex degradation tasks, where targets of differ-
ent difficulties are ordered for progressive learning. With the help of progressive learning, complex
problems can be decomposed into multiple simple tasks, hence accelerating model convergence
and obtaining better reconstruction results.

Multi-scale Learning: Rich and accurate image features are essential for SR image reconstruc-
tion. Meanwhile, plenty of research works [29, 87, 157] have pointed out that images may exhibit
different characteristics at different scales and thus making full use of these features can further
improve model performance. Inspired by the inception module [29], Li et al. [98] proposed a multi-

scale residual block (MSRB, Figure 8) for feature extraction. MSRB integrates different convo-
lution kernels in a block to adaptively extract image features at different scales. After that, Li
et al. [97] further optimized the structure and proposed a more accurate multi-scale dense cross

block (MDCB) for feature extraction. MDCB is essentially a dual-path dense network that can
effectively detect local and multi-scale features.

Recently, more and more multi-scale SISR models have been proposed. For instance, Qin
et al. [141] proposed a multi-scale feature fusion residual network (MSFFRN) to fully exploit
image features for SISR. Chang et al. [17] proposed a multi-scale dense network (MSDN) by
combining multi-scale learning with the dense connection. Cao et al. [15] developed a new SR ap-
proach called multi-scale residual channel attention network (MSRCAN), which introduced
the channel attention mechanism (CAM) into the MSRB. All the above examples indicate that
the extraction and utilization of multi-scale image features are of increasing importance to further
improve the quality of the reconstructed images.

Attention Mechanism: Attention mechanism can be considered as a tool that can allocate
available resources to the most informative part of the input. To improve the efficiency during the
learning procedure, some works are proposed to guide the network to pay more attention to the
regions of interest. For instance, Hu et al. [69] proposed a squeeze-and-excitation (SE) block to
model channel-wise relationships in the image classification task. Wang et al. [174] proposed a
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Fig. 9. The principle of CAM.

non-local attention neural network for video classification by incorporating non-local operations.
Motivated by these methods, an attention mechanism has also been introduced into SISR.

Channel Attention: In SISR, we mainly want to recover as much valuable high-frequency infor-
mation as possible. However, common CNN-based methods treat channel-wise features equally,
which lacks flexibility in dealing with different types of information. To solve this problem, many
methods [132, 225] introduce the SE mechanism in the SISR model. For example, Zhang et al. [225]
proposed a new module based on the SE mechanism, named residual channel attention block

(RCAB). As shown in Figure 9, a global average pooling layer followed by a Sigmoid function is
used to rescale each feature channel, allowing the network to concentrate on the more useful chan-
nels and enhancing discriminative learning ability. In SAN [33], second-order statistics of features
are explored to conduct the attention mechanism based on covariance normalization. A great num-
ber of experiments have shown that second-order channel attention can help the network obtain
more discriminative representations, leading to higher reconstruction accuracy.

Non-Local Attention: When CNN-based methods conduct convolution in a local receptive field,
the contextual information outside this field is ignored, while the features in distant regions may
have a high correlation and can provide effective information. Given this issue, non-local attention
has been proposed as a filtering algorithm to compute a weighted mean of all pixels of an image.
In this way, distant pixels can also contribute to the response of a position in concern. For exam-
ple, the non-local operation is conducted in a limited neighborhood to improve the robustness in
NLRN [113]. A non-local attention block is proposed in RNAN [227], where the attention mech-
anisms in both channel- and spatial-wise are used simultaneously in its mask branch to better
guide feature extraction in the trunk branch. Meanwhile, a holistic attention network is proposed
in HAN [138], which consists of a layer attention module and a channel-spatial attention module,
to model the holistic interdependence among layers, channels, and positions. In CSNLN [134], a
cross-scale non-local attention module is proposed to mine long-range dependencies between LR
features and large-scale HR patches within the same feature map. To mitigate the noise pollution
caused by non-local attention, ENLCA [197] utilizes efficient non-local attenuation and sparse ag-
gregation to focus on useful information with contrast learning to separate irrelevant features. All
these methods show the effectiveness of non-local attention, which can further improve the model
performance.

Feedback Mechanism: The feedback mechanism refers to carrying a notion of output to the
previous states, allowing the model to have a self-correcting procedure. It is worth noting that
the feedback mechanism is different from recursive learning since in the feedback mechanism the
model parameters keep self-correcting and do not share. Recently, the feedback mechanism has
been widely used in many computer vision tasks [14, 16], which is also beneficial for SR image
reconstruction. Specifically, the feedback mechanism allows the network to carry high-level infor-
mation back to previous layers and refine low-level information, thus fully guiding the LR image
to recover high-quality SR images.

In DBPN [62], iterative up- and down-sampling layers are provided to achieve an error feedback
mechanism for projection errors at each stage. In DSRN [61], a dual-state recurrent network is
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Fig. 10. The structure of the HFDB.

proposed, where recurrent signals are exchanged between these states in both directions via de-
layed feedback. In SFRBN [106], a feedback block is proposed, in which the input of each iteration is
the output of the previous one as the feedback information. Followed by several projection groups
sequentially with dense skip connections, low-level representations are refined and become more
powerful high-level representations.

Gating Mechanism: Skip connection in the above residual learning tends to make the chan-
nel dimension of the output features extremely high. If such a high-dimension channel remains
the same in the following layers, the computational cost will be terribly large and therefore will
affect the reconstruction efficiency and performance. Intuitively, the output features after the skip
connection should be efficiently re-fused instead of simply concatenated.

To solve this issue, researchers recommend using the gating mechanism to adaptively extract
and learn more efficient information. Most of the time, a 1 × 1 convolutional layer is adopted
to accomplish the gating mechanism, which can reduce the channel dimension and leave more
effective information. In SRDenseNet [162] and MSRN [98], such 1 × 1 convolutional layer acts as
a bottleneck layer before the reconstruction module. In MemNet [159], it is a gate unit at the end
of each memory block to control the weights of the long-term memory and short-term memory.
Note that, the gate is not only able to serve as bottlenecks placed at the end of the network, but also
continuously conducted in the network. For example, in MemNet [159] and CARN [4], the gating
mechanism is used in both global and local regions. Sometimes, it can be combined with other
operations, such as the attention mechanism, to construct a more effective gate module to achieve
feature distillation. For instance, Li et al. [97] proposed a hierarchical feature distillation block

(HFDB) (Figure 10) by combining 1 × 1 convolutional layer and attention mechanism.
Efficient Structure: There is no doubt that increasing the depth of the model is the easiest

way to improve the model performance. However, due to the huge computational overhead of
deep and large models, it is difficult to be applied to mobile devices with limited computing capa-
bilities. To address this issue, more and more lightweight and efficient SISR methods have been
proposed in recent years. For instance, Ahn et al. [3] designed an architecture (CARN) that im-
plements a cascading mechanism upon the residual network, which achieved fast, accurate, and
lightweight SR. Hui et al. [75] proposed a novel Information Distillation Network (IDN) with
lightweight parameters and computational complexity by using the information distillation strat-
egy. After that, the author further proposed a Lightweight Information Multi-Distillation Net-

work (IMDN) by constructing the cascaded information multi-distillation blocks. Liu et al. [114]
proposed a RFDN, enhances the efficiency of SISR by incorporating a lighter feature distillation
connection operation. Zhou et al. [234] have developed VapSR, which refines attention mecha-
nisms to create a more efficient SR network. Li et al. [155] introduced ShuffleMixer, a technique
that investigates the use of large convolutions and channel splitting shuffle operations to make the
network more mobile-compatible. Li et al. [105] proposed a Blueprint Separable Residual Net-

work (BSRN) containing two efficient designs, blueprint separable convolution and more effective
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Fig. 11. The structure of classic Transformer. The key component is the multi-head attention (MHA)

module.

attention modules. Li et al. [101] proposed a novel Cross-receptive Field Guided Transformer

(CFGT) to enable the selection of contextual information required for reconstruction by using a
modulated convolutional kernel. In addition, some hardware-friendly SISR methods have emerged.
For example, Luo et al. [121] proposed an Individual Kernel Sparsity (IKS) method for memory-
efficient and sparsity-adjustable image SR, which enables deep networks can be deploymented in
memory-limited devices. Ye et al. [204] proposed a Hardware-friendly Scalable SR (HSSR) with
progressively structured sparsity. This model can cover multiple SR models with different sizes by
a single scalable model, without extra retraining or post-processing. Lin et al. [109] proposed a
Memory-friendly Scalable dynamic SR (MSSR) lightweight model via rewinding, which can
be easily generalized to different SR models. Choi et al. [28] introduced a NGswin, which boosts
performance in SISR by broadening the receptive field of window-based self-attentive methods.
Wang et al. [166] proposed a Omni-SR, enhancing the capabilities of lightweight models by repli-
cating pixel interactions across both spatial and channel dimensions. Li et al. [102] introduced a
DLGSANet, which streamlines SISR efficiency by employing sparse global self-attention modules
to pinpoint the most pertinent similarity values.

Transformer-based Method: The key idea of the Transformer is the “self-attention” mech-
anism, which can capture long-term information between sequence elements. Recently, Trans-
former [164] (Figure 11) has achieved brilliant results in NLP tasks. For example, the pre-trained
DL models (e.g., BERT [35], GPT [144]) have shown effectiveness over conventional methods. In-
spired by this, more and more researchers have begun to explore the application of Transformers
in computer vision tasks and have achieved breakthrough results in many tasks. In image restora-
tion, Transformer is often used to capture the global information of the image to further improve
the quality of the reconstructed image.

In recent years, more and more Transformer-based models have been proposed. For example,
Chen et al. proposed the Image Processing Transformer (IPT [22]) which was pre-trained on
large-scale datasets. In addition, contrastive learning is introduced for different image-processing
tasks. Therefore, the pre-trained model can efficiently be employed on the desired task after fine-
tuning. However, IPT [22] relies on large-scale datasets and has a large number of parameters (over
115.5M parameters), which greatly limits its application scenarios. To solve this issue, Liang et al.
proposed the SwinIR [107] for image restoration based on the Swin Transformer [117]. Specifically,
the Swin Transformer blocks (RSTB) are proposed for feature extraction and DIV2K+Flickr2K is
used for training. To improve the lack of direct interaction between different windows in SwinIR.
Zamir [212] et al. proposed Restormer to reconstruct high-quality images by embedding CNNs
within Transformer and performing local-global learning at multiple scales. Chen et al. proposed
CAT [27] to extend the attention region and aggregate features across different windows. Then,
to activate more of the pixels that Transformer focuses on, Chen et al. proposed HAT [24], which
uses overlapping cross-attention modules in conjunction with a pre-training strategy to enhance
Transformer model potential. Li [103] et al. proposed GRL to explicitly model the image hierarchy
at global, regional, and local scales by integrating various attentions within the Transformer. As
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for the application on the lightweight SISR model, Lu et al. [119] proposed an Efficient Super-

Resolution Transformer (ESRT) for fast and accurate SISR which achieves competitive re-
sults with fewer parameters and low computing costs. Zhang et al. [222] proposed ELAN with
a shared self-attention mechanism to reduce model complexity and accelerate the Transformer-
based model. Wang et al. [191] proposed the Uformer, a general and superior U-shaped Trans-
former, which can reduce the computational complexity on HR feature map while capturing local
context and multi-scale features. Zamir et al. [212] proposed an efficient Restormer that can cap-
ture long-range pixel interactions while remaining applicable to large images. Li et al. [101] pro-
posed a Cross-receptive Focused Inference Network (CFIN) that can incorporate contextual
modeling to achieve good performance with limited computational resources. Zhu et al. [239] de-
signed an Attention Retractable Frequency Fusion Transformer (ARFFT) to strengthen the
representation ability and extend the receptive field to the whole image. Li et al. [100] proposed
a concise and powerful Pyramid Clustering Transformer Network (PCTN) for lightweight
SISR. Chen et al. [26] proposed a novel Dual Aggregation Transformer (DAT) for SISR, which
aggregates features across spatial and channel dimensions, in the interblock and intra-block dual
manner. Zhou et al. [236] proposed a SRFormer, which elevates the performance of window-based
Transformer approaches by effectively integrating self-attentive channel and spatial information.
Li et al. [103] achieve optimal performance across multiple scenarios by developing GRL, a hier-
archical Transformer-based model for image upscaling that operates on global, regional, and local
scales. ATDSR, brought forth by Zhang et al. [218], enriches the SR Transformer with an auxiliary
set of adaptive token dictionaries, thereby enhancing the precision of SISR. Adaptive token sparsif-
cation transformer (AdaFormer) proposed by Luo et al. [120] speeds up model inference for images
by incorporating sparsity strategies. Although the performance of the Transformer-based method
has greatly improved, the attention mechanism used in Transform will occupy a large amount of
GPU memory. Therefore, how to further reduce the GPU memory of Transformer-based methods
is worth further exploration.

3.2 Perceptual Quality Methods

Most methods simply seek to reconstruct SR images with high PSNR and SSIM. However, the im-
provement in reconstruction accuracy is not always accompanied by an improvement in visual
quality. Blau et al. [10] pointed out that there was a perception-distortion tradeoff. It is only possi-
ble to improve either perceptual quality or distortion while improving one must be at the expense
of the other. Hence, in this section, we provide methods to ease this tradeoff problem, hoping to
provide less distortion while maintaining the good perceptual quality of the image.

Perceptual Loss: Although pixel-wise losses, i.e., L1 and MSE loss, have been widely used to
achieve high image quality, they do not capture the perceptual differences between the SR and HR
images. In order to address this problem and allow the loss functions to better measure the percep-
tual and semantic differences between images, content loss, texture loss, and targeted perceptual
loss are proposed. Among them, the content loss is widely used to keep the image consistent with
the target [91, 176], which has been introduced in Section 2.4.1. Apart from obtaining more similar
content, the same style, such as colors, textures, common patterns, and semantic information are
also needed. Therefore, other perceptual losses need to be considered.

Texture Loss: Texture loss, also called style reconstruction loss, is proposed by Gatys et al. [53, 54],
which can make the model reconstruct high-quality textures. The texture loss is defined as the

squared Frobenius norm of the difference between the Gram matricesG
ϕ
j (x) of the output and the

ground truth images:
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With the help of the texture loss, the model tends to produce images that have the same local
textures as the HR images during training [80].

Targeted Perceptual Loss: The conventional perceptual loss estimates the reconstruction error
for an entire image without considering semantic information, resulting in limited capability. Rad
et al. [142] proposed a targeted perceptual loss that penalized images at different semantic levels
based on the labels of object, background, and boundary. Therefore, more realistic textures and
sharper edges can be obtained to reconstruct realistic SR images.

Adversarial Training: In 2014, the GANs were proposed by Goodfellow et al. [56], which have
been widely used in compute vision tasks, such as style transfer and image inpainting. The GANs
consist of a generator and a discriminator. When the discriminator is trained to judge whether an
image is true or false, the generator aims at fooling the discriminator rather than minimizing the
distance to a specific image, hence it tends to generate outputs that have the same statistics as the
training set.

Inspired by GAN, Ledig et al. [91] proposed the Super-Resolution Generative Adversarial

Network (SRGAN). In SRGAN, the generator G is essentially an SR model that is trained to fool
the discriminator D, and D is trained to distinguish SR images from HR images. Therefore, the
generator can learn to produce outputs that are highly similar to HR images, and then reconstruct
more real and natural SR images. The generative loss LGen(Ix ) can be defined as

LGen = − logDθD
(GθG

(Ix )), (26)

and the loss in terms of the discriminator is

LDis = − log(DθD
(Iy )) − log(1 − DθD

(GθG
(Ix ))). (27)

Therefore, we need to solve the following problem:

min
θG

max
θD

EIy∼pdat a (Iy )
(logDθD

(Iy )) +

EIx∼pG (Ix )
(log(1 − DθD

(GθG
(Ix )))).

(28)

In SRGAN [91], the generator is the SRResNet and the discriminator uses the architecture pro-
posed by Radford et al. [143]. In ESRGAN [177], Wang et al. made two modifications to the SRRes-
Net: (1) replace the original residual block with the residual-in-residual dense block; (2) remove the
BN layers to improve the generalization ability of the model. In SRFeat [139], Park et al. indicated
that the GAN-based SISR methods tend to produce less meaningful high-frequency noise in recon-
structed images. Therefore, they adopted two discriminators: an image discriminator and a feature
discriminator, where the latter is trained to distinguish SR images from HR images based on the
intermediate feature map extracted from a VGG network. In ESRGAN [177], Wang et al. adopted
the Relativistic GAN [81], where the standard discriminator was replaced with the relativistic aver-
age discriminator to learn the relatively realistic between two images. This modification helps the
generator to learn sharper edges and more detailed textures. Wang et al. [178] proposed a novel
GAN inversion framework that utilizes the powerful generative ability of StyleGAN-XL, which
shows preferable quantitative and qualitative results in SISR.

Cycle Consistency: Cycle consistency assumes that there exist some underlying relationships
between the source and target domains, and tries to make supervision at the domain level. To be
precise, we want to capture some special characteristics of one image collection and figure out how
to translate these characteristics into the other image collection. To achieve this, Zhu et al. [238]
proposed the cycle consistency mechanism, where not only the mapping from the source do-
main to the target domain is learned, but also the backward mapping is combined. Specifically,
given a source domain X and a target domain Y , we have a translator G : X → Y and another
translator F : Y → X that is trained simultaneously to guarantee both an adversarial loss that
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encouragesG(X ) ≈ Y and F (Y ) ≈ X and a cycle consistency loss that encourages F (G(X )) ≈ X and
G(F (Y )) ≈ Y .

In SISR, the idea of cycle consistency has also been widely discussed. Given the LR images
domain X and the HR images domain Y , we not only learn the mapping from LR to HR but also
the backward process. Researchers have shown that learning how to perform image degradation
first without paired data can help generate more realistic images [11]. In CinCGAN [210], a cycle-
in-cycle network is proposed, where the noisy and blurry input is mapped to a noise-free LR
domain first and then upsampled with a pre-trained model. In DRN [60], the mapping from HR
to LR images is learned to estimate the down-sampling kernel and reconstruct LR images, which
forms a closed loop to provide additional supervision. DRN also gives us a novel approach in
unsupervised learning SR, where the model is trained with both paired and unpaired data.

Diffusion-based Method: Derived from the recent inspiration in the denoising diffusion

probability model (DDPM) [68], a new conditional image generation method is incorporated
into the SISR task. Compared with the GAN-based SISR method, the diffusion model-based SISR
methods [52, 96, 147, 149] have better fidelity and reduce the generation of artifacts.

SRDiff [96] is the first diffusion-based SISR model, which provides diverse and realistic SISR pre-
dictions by gradually converting Gaussian noise into SISR images with LR as the input condition
through Markov chains. SR3 [147] iteratively refines the pure Gaussian noise input using a model
trained for denoising at various noise levels. Compared to GAN-based methods, it can output
more realistic photos. IDM [52] integrates implicit neural representation and denoising diffusion
model end-to-end and employs implicit neural representation to learn continuous image resolu-
tion representation during decoding. DR2 [193] utilizes DDPM to coarsely reduce more complex
low-quality face images and then uses the enhancement module to fully restore them to HR face
images. There is also a class of methods that aim to utilize the prior diffusion-based models to aid
SISR. For example, StableSR [167] and DiffBIR [110] achieve real-world SISR by fine-tuning with
prior knowledge from a pre-trained text-to-image diffusion model, such as Stable diffusion [146].
DiffIR [198] utilizes a pre-trained model trained on ground-truth images to incorporate the prior
into the SISR model, which can result in accurate estimates using fewer iterations than traditional
DDPM. However, diffusion-based SISR models still need a large number of new samples and the
slow convergence rate of the model limits their use scenarios. Therefore, how to overcome these
drawbacks is still worthy of study.

3.3 Information Utilization Methods

In the aforementioned part, we have introduced the way to design an efficient SISR model, as well
as obtaining high reconstruction accuracy and high perceptual quality for SR images. Although
the current SISR model has made a significant breakthrough, how to use the information inside
and outside of the image to further improve the performance of the model is still worth exploring.

Internal Statistics: In [241], Zontak et al. found that some patches exist only in a specific im-
age and cannot be found in any external database of examples. Therefore, SR methods trained on
external images cannot work well on such images due to the lack of patch information, while meth-
ods based on internal statistics may have a good performance. Meanwhile, Zontak et al. pointed
out that the internal entropy of patches inside a single image was much smaller than the external
entropy of patches in a general collection of natural images. Therefore, using the internal image
statistics to further improve model performance is a good choice.

In ZSSR [152], the property of internal image statistics is used to train an image-specific CNN,
where the training examples are extracted from the test image itself. In the training phase, several
LR-HR pairs are generated by using data augmentation, and a CNN is trained with these pairs. In
test time, the LR image ILR is fed to the trained CNN as input to get the reconstructed image. In
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this process, the model makes full use of internal statistics of the image itself for self-learning. In
SinGAN [148], an unconditional generative model with a pyramid of fully convolutional GANs is
proposed to learn the internal patch distribution at different scales of the image. To make use of
the recurrence of internal information, they upsampled the LR image several times (depending on
the final scale) to obtain the final SR output.

Multi-factor Learning: Typically, in SISR, we often need to train specific models for different
upsampling factors and it is difficult to arise at the expectation that a model can be applied to
multiple upsampling factors. To solve this issue, some models have been proposed for multiple up-
sampling factors. Surprisingly, researchers found that this method can fully exploit the inter-scale
correlation between different upsampling factors, which can further improve model performance.

In LapSRN [88], LR images are progressively reconstructed in the pyramid networks to obtain
the large-scale results, where the intermediate results can be taken directly as the corresponding
multiple factors results. In [108], Lim et al. found the inter-related phenomenon among multiple
scales tasks, i.e., initializing the high-scale model parameters with the pre-trained low-scale net-
work can accelerate the training process and improve the performance. Therefore, they proposed
the scale-specific processing modules at the head and tail of the model to handle different upsam-
pling factors. To further exploit the inter-scale correlation between different upsampling factors,
Li et al. further optimized the strategy in MDCN [97]. Different from MDSR which introduces the
scale-specific processing strategy both at the head and tail of the model, MDCN can maximize the
reuse of model parameters and learn the inter-scale correlation.

Prior Guidance: Most methods tend to build end-to-end CNN models to achieve SISR since it is
simple and easy to implement. However, it is rather difficult for them to reconstruct realistic high-
frequency details due to plenty of useful features have been lost or damaged. To solve this issue,
a priors-guided SISR framework has been proposed. Extensive experiments have shown that with
the help of image priors, the model can converge faster and achieve better reconstruction accuracy.
Recently, many image priors have been proposed, such as TV prior, sparse prior, and edge prior.

Motivated by this, Yang et al. [203] integrated the edge prior with recursive networks and pro-
posed a Deep Edge Guided Recurrent Residual (DEGREE) Network for SISR. After that, Fang
et al. [43] proposed an efficient and accurate Soft-edge Assisted Network (SeaNet). Different
from DEGREE, which directly applies the off-the-shelf edge detectors to detect image edges, SeaNet
automatically learns more accurate image edges from the constructed EdgeNet. Meanwhile, they
find that more accurate priors can lead to more significant performance. Additionally, image priors
are also beneficial for GAN-based models. For example, the semantic categorical prior is used to
generate richer and more realistic textures with the help of spatial feature transform (SFT) in
SFTGAN[176]. With this information from high-level tasks, similar LR patches can be easily dis-
tinguished and more natural textual details can be generated. In SPSR [125], the authors utilized
the gradient maps to guide image recovery to solve the problem of structural distortions in the
GAN-based methods. Among them, the gradient maps are obtained from a gradient branch and
integrated into the SR branch to provide structure prior. With the help of gradient maps, we know
which region should be paid more attention to, so as to guide image generation and reduce geo-
metric distortions. In FeMaSR [19], the authors use discrete features obtained by VQ-GAN [208]
pre-training in HR images as prior information to performing image recovery by matching dis-
torted LR image features with distortion-free HR features from the pre-trained HR prior.

Reference-based Method: In contrast to SISR where only a single LR image is used as in-
put, reference-based SISR (RefSR) takes a reference image to assist the SR process. The reference
images can be obtained from various sources like photo albums, video frames, and web image
searches. Meanwhile, there are several approaches proposed to enhance image textures, such as
image aligning and patch matching. Recently, some RefSR methods [211, 232] chose to align the
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LR and reference images with the assumption that the reference image possesses similar content
as the LR image. For instance, Yue et al. [211] conducted global registration and local matching
between the reference and LR images to solve an energy minimization problem. In CrossNet [232],
optical flow is proposed to align the reference and LR images at different scales, which are later
concatenated into the corresponding layers of the decoder. However, these methods assume that
the reference image has a good alignment with the LR image. Otherwise, their performance will
be significantly influenced. Different from these methods, Zhang et al. [230] applied patch match-
ing between VGG features of the LR and reference images to adaptively transfer textures from
the reference images to the LR images. In TTSR [201], Yang et al. proposed a texture transformer
network to search and transfer relevant textures from the reference images to the LR image.

Knowledge Distillation: Knowledge distillation refers to a technique that transfers the repre-
sentation ability of a large (Teacher) model to a small one (Student) for enhancing the performance
of the student model. Hence, it has been widely used for network compression or to further im-
prove the performance of the student model, which has shown effectiveness in many computer
vision tasks. Meanwhile, there are mainly two kinds of knowledge distillation, soft label distilla-
tion, and feature distillation. In soft label distillation, the softmax outputs of a teacher model are
regarded as soft labels to provide informative dark knowledge to the student model [67]. In feature
distillation, the intermediate features maps are transferred to the student model [1, 5].

Inspired by this, some works introduce the knowledge distillation technique to SISR to further
improve the performance of lightweight models. For instance, in SRKD [51], a small but efficient
student network is guided by a deep and powerful teacher network to achieve similar feature distri-
butions to those of the teacher. In [93], the teacher network leverages the HR images as privileged
information, and the intermediate features of the decoder of the teacher network are transferred
to the student network via feature distillation so that the student can learn high-frequency details
from the Teacher which is trained with the HR images. Subsequently, JDSR [122] explored a joint
distillation learning that effectively improves the distillation performance of lightweight models
by using distillation of HR’s privileged information in conjunction with internal self-distillation.
CSD [175] combines the contrast learning and distillation tasks to further reduce the solution
space of SISR. In addition, to solve the model compression problem for unsupervised issues, [224]
used a generator to synthesize training samples close to the original data after using a progressive
distillation scheme to improve student model performance.

3.4 Real-World Image SR

The degradation modes are complex and unknown in real-world scenarios [21], where downsam-
pling is usually performed after anisotropic blurring and sometimes signal-dependent noise is
added. It is also affected by the in-camera signal processing (ISP) pipeline. Therefore, simula-
tion SISR models exhibit poor performance when handling real-world images. Meanwhile, most of
the aforementioned models can only be applied to some specific integer upsampling factors. This
greatly limits the practical application and promotion of these models. To solve these problems,
some interesting methods have been proposed. Based on the problems they intend to solve, we
divide them into two major categories: Blind Image SR and Scale Arbitrary SR.

3.4.1 Blind Image SR. Blind SISR has attracted increasing attention due to its significance in
real-world applications, which aim to super-resolve LR images with unknown degradation. It is
worth noting that blind SISR has no clear definitions. More details about blind SISR can be found
in [111]. In this work, we simply divided them into two categories: explicit degradation model-
ing methods and implicit degradation modeling methods, according to the ways of degradation
modeling.
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Explicit Degradation Modeling: Blind SISR methods with explicit modeling of the degrada-
tion process are mainly based on the classical degradation model, where the blur kernel and ad-
ditive noise are two main degradation factors. According to whether the degradation process is
estimated, this type of method can be further divided into two categories: image-specific adapta-
tion without degradation estimation and image-specific adaptation with degradation estimation.
Among them, the first type of method often uses an external method to perform degradation esti-
mation before the SR process, thus adapting the framework to the blind setting. The second type of
method often uses an internal module for degradation estimation and outputs the degradation rep-
resentation. For example, Zhang et al. [217] proposed a simple and scalable deep CNN framework
(SRMD) for multiple degradations learning. In SRMD, the concatenated LR image and degradation
maps are taken as input of the network to achieve image SR under different degradations. Based
on SRMD, Xu et al. [200] proposed the UDVD, which uses dynamic convolution to process dif-
ferent degradations in different areas in the image. This type of method often relies on reliable
degradation estimation methods to quickly obtain satisfactory SR output. Hence, a method that
incorporates degradation estimation into the SR framework will obtain more stable and reliable re-
sults. Toward filling this gap, growing attention has been paid to image-specific adaptation method
with degradation estimation. This type of method combines degradation estimation and SR pro-
cesses into a unified model, in which kernel estimation is the main research work. For example, in
IKC [57], the iterative kernel correction procedure is proposed to help the blind SISR task find more
accurate blur kernels. Inspired by it, Luo et al. [124] adopted an alternating optimization algorithm
and proposed a Deep Alternating Network (DAN) to estimate blur kernel and restore SR image
in a single network, which makes the restorer and estimator well compatible with each other, and
thus achieves good results in kernel estimation. Although such methods are more robust than
using off-the-shelf estimation algorithms, such iterative schemes often consume more inference
time and may lead to SR failure due to large estimation errors. To address this issue, some works
introduced more accurate degradation estimation methods. In [171], the author suggested learning
abstract representations to distinguish various degradations in the representation space and intro-
duced a Degradation-Aware SR (DASR) network with flexible adaption to various degradations
based on the learned representations. There are also some methods proposed to estimate more re-
alistic kernels from real images. For instance, in [12], the RealSR dataset is proposed, where paired
LR-HR images on the same scene are captured by adjusting the focal length of a digital camera.

Implicit Degradation Modeling: Blind SISR methods with implicit modeling of degradation
process aim to model the degradation through learning with external dataset. This type of method
usually learns data distribution by a GAN framework, and one or more discriminators are used
to distinguish generated images from real ones. For example, Yuan et al. [210] proposed an un-
supervised image SR using Cycle-in-Cycle Generative Adversarial Networks (CinCGAN).
CinCGAN first mapped the noisy and blurry input to a noise-free LR space, and then the interme-
diate image was up-sampled with a pre-trained model. Finally, these two modules are fine-tuned
in an end-to-end manner to get SR output. Bulat et al. [11] believed that LR images in the real
world constitute a specific distribution in high-dimensional space, and use a GAN to generate LR
images consistent with this distribution from HR images. After that, Yuan et al. [210] and Maeda
et al. [129] further proposed a unified framework, which can simultaneously learn the genera-
tion of pseudo-LR images and the reconstruction of HR images, achieving better results in actual
scenes. Wei et al. [195] further considered the domain difference between pseudo-LR images and
real LR images, and proposed a domain adaptation mechanism to improve model performance.
Wolf et al. [196] proposed the DeFlow framework, which uses the stochastic modeling ability of
the flow model to enhance the diversity of pseudo-LR images, and further improves the image SR
performance in real scenes.
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Fig. 12. Examples of various popular SR tasks. (a) T2Net [44] for Medical SR, (b) PASSRNet [169] for Stereo

SR, (c) MST++ [13] for Hyperspectral SR, (d) SMSR [41] for Remote Sensing SR, (e) GFPGAN [175] for Face

SR, (f) LF-InterNet [185] for LF SR.

3.4.2 Scale Arbitrary. In real application scenarios, in addition to processing real images, it
is also important to handle arbitrary scale factors with a single model. To achieve this, Hu et al.
proposed two simple but powerful methods termed Meta-SR [70] and Meta-USR [71]. Among them,
Meta-SR is the first SISR method that can be used for arbitrary scale factors and Meta-USR is an
improved version that can be applied to arbitrary degradation mode (including arbitrary scale
factors). Although Meta-SR and Meta-USR achieve promising performance on non-integer scale
factors, they cannot handle SR with asymmetric scale factors. To alleviate this problem, Wang
et al. [173] suggested learning the scale-arbitrary SISR model from scale-specific networks and
developed a plug-in module for existing models to achieve scale-arbitrary SR. Specifically, the
proposed plug-in module uses conditional convolution to dynamically generate filters based on the
input scale information, thus the networks equipped with the proposed module achieve promising
results for arbitrary scales with only a single model.

3.5 Domain-Specific Applications

The technology of image SR has been widely used in many application scenarios. As shown in
Figure 12, we introduce various applications of SR in this section.

3.5.1 Stereo Image SR. The dual camera has been widely used to estimate depth information.
Meanwhile, stereo imaging can also be applied in image restoration. In this task, we have two
images with a disparity much larger than one pixel. Therefore, full use of these two images can
enhance spatial resolution.

In StereoSR [76], Jeon et al. proposed a method that learned a subpixel parallax prior to enhanc-
ing the spatial resolution of the stereo images. However, the number of shifted right images is fixed
in StereoSR, which makes it fail to handle different stereo images with large disparity variations.
To handle this problem, Wang et al. [169, 172] proposed a parallax-attention mechanism with a
global receptive field along the epipolar line, which can generate reliable correspondence between
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the stereo image pair and improve the quality of the reconstructed SR images. In [184], a dataset
named Flickr1024 is proposed for stereo image SR, which consists of 1024 high-quality stereo im-
age pairs. In [205], a stereo attention module is proposed to extend pre-trained SISR networks for
stereo image SR, which interacts with stereo information bi-directionally in a symmetric and com-
pact manner. In [187], a symmetric bi-directional parallax attention module and an inline occlusion
handling scheme are proposed to effectively interact with cross-view information. In [32], a Stereo

Super-Resolution and Disparity Estimation Feedback Network (SSRDE-FNet) is proposed
to simultaneously handle the stereo image SR and disparity estimation in a unified framework.
In [30], in addition to extracting single image features from the left and right views separately
using NAFNet [23], a stereo cross-attention module is introduced to fuse the image features from
the left and right views.

3.5.2 Remote Sensing Image SR. With the development of satellite image processing, remote
sensing has become more and more important. However, due to the limitations of current imaging
sensors and complex atmospheric conditions, such as limited spatial resolution, spectral resolution,
and radiation resolution, we are facing huge challenges in remote sensing applications.

Recently, many methods have been proposed for remote sensing image SR. For example, a new
unsupervised hourglass neural network is proposed in [63] to super-resolved remote sensing im-
ages. The model uses a generative random noise to introduce a higher variety of spatial patterns,
which can be promoted to a higher scale according to a global reconstruction constraint. In [58], a
Deep Residual Squeeze and Excitation Network (DRSEN) is proposed to overcome the prob-
lem of the high complexity of remote sensing image distribution. In [215], a mixed high-order

attention network (MHAN) is proposed, which consists of a feature extraction network for fea-
ture extraction and a feature refinement network with the high-order attention mechanism for
detail restoration. In [41], the authors developed a Dense-Sampling Super-Resolution (DSSR)
Network to explore the large-scale SR reconstruction of the remote sensing imageries. In [94],
the authors proposed a new Hybrid-scale Self-similarity Exploitation Network (HSENet),
which can simultaneously exploit single and cross-scale similarities for high-quality image recon-
struction; In [181], Wang et al. proposed a Multi-scale Enhancement Network (MEN), which
uses multi-scale features of remote sensing images to enhance the network’s reconstruction capa-
bility; In [116], Liu et al. proposed a Dual Learning-based Graph Neural Network (DLGNN),
in which the graph neural network (GNN) is utilized to consider the self-similarity patches in re-
mote sensing imagery by aggregating cross-scale neighboring feature patches. All these methods
achieve excellent results in remote sensing image SR.

3.5.3 Light Field Image SR. A light field (LF) camera is a camera that can capture information
about the LF emanating from a scene and can provide multiple views of a scene. Recently, the
LF image has become more and more important since it can be used for post-capture refocusing,
depth sensing, and de-occlusion. However, LF cameras are faced with a tradeoff between spatial
and angular resolution [185]. To solve this issue, SR technology is introduced to achieve a good
balance between spatial and angular resolution.

In [206], a cascade convolution neural network is introduced to simultaneously up-sample both
the spatial and angular resolutions of a LF image. Meanwhile, a new LF image dataset is proposed
for training and validation. To reduce the dependence of accurate depth or disparity information as
priors for the LF image SR, Sun et al. [179] proposed a bidirectional recurrent convolutional neural
network and an implicitly multi-scale fusion scheme for SR images reconstruction. In [185], Wang
et al. proposed a spatial-angular interactive network (LF-InterNet) for LF image SR. Meanwhile,
they designed an angular deformable alignment module for feature-level alignment and proposed
a deformable convolution network (LF-DFnet [186]) to handle the disparity problem of LF image
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SR. In [183], Wang et al. further proposed a generic LF disentangling mechanism to achieve SOTA
performance in spatial SR, angular SR and disparity estimation, respectively. In [163], Duong et al.
proposed a LF SR model via joint spatial-angular and epipolar information, which can simultane-
ously exploit information from three different types of 4D LF representation.

3.5.4 Face Image SR. Face image SR is the most famous field in which SR technology to domain-
specific images. Due to the potential applications in facial recognition systems such as security and
surveillance, face image SR has become an active area of research.

Recently, DL-based methods have achieved remarkable progress in face image SR. In [233], a
dubbed CPGAN is proposed to address face hallucination and illumination compensation together,
which is optimized by the conventional face hallucination loss and a new illumination compensa-
tion loss. In [240], Zhu et al. proposed to jointly learn face hallucination and facial spatial corre-
spondence field estimation. In [209], spatial transformer networks are used in the generator archi-
tecture to overcome problems related to the misalignment of input images. In [37, 216], the identity
loss is utilized to preserve the identity-related features by minimizing the distance between the
embedding vectors of SR and HR face images. In [49], the mask occlusion is treated as image noise,
and a joint and collaborative learning network (JDSR-GAN) is constructed for the masked face SR
task. These methods [59, 235, 237] for reconstructing high-quality face images with photo-realistic
textures from very LR inputs are mainly based on the generative prior of GAN.

3.5.5 Hyperspectral Image SR. In contrast to human eyes that can only be exposed to visible
light, hyperspectral imaging is a technique for collecting and processing information across the
entire range of electromagnetic spectrum[145]. The hyperspectral system is often compromised
due to the limitations of the amount of incident energy, hence there is a tradeoff between the
spatial and spectral resolution. Therefore, hyperspectral image SR is studied to solve this problem.

In [133], a 3D fully convolutional neural network is proposed to extract the feature of hyperspec-
tral images. In [104], Li et al. proposed a grouped deep recursive residual network by designing a
group recursive module and embedding it into a global residual structure. In [45], an unsupervised
CNN-based method is proposed to effectively exploit the underlying characteristics of the hyper-
spectral images. In [78], Jiang et al. proposed a group convolution and progressive upsampling
framework to reduce the size of the model and make it feasible to obtain stable training results
under small data conditions. In [112], a Spectral Grouping and Attention-Driven Residual Dense
Network is proposed to facilitate the modeling of all spectral bands and focus on the exploration
of spatial-spectral features. In [13], the quality of reconstructed images is improved from coarse
to fine by using the spectral-wise multi-headed self-attention, which is based on the HSI spatially
sparse while spectrally selfsimilar nature to compose the basic unit. In [219], Zhang et al. proposed
an efficient Transformer for hyperspectral image SR via a novel and efficient SCC-kernel-based
self-attention method.

3.5.6 Medical Image SR. Medical imaging methods such as Computational Tomography

(CT) and Magnetic Resonance Imaging (MRI) are essential to clinical diagnoses and surgery
planning. Hence, HR medical images are desirable to provide necessary visual information about
the human body. In recent years, many DL-based methods have also been proposed for medical
image SR.

For instance, Chen et al. proposed a Multi-level Densely Connected Super-Resolution Net-

work (mDCSRN [25]) with GAN-guided training to generate HR MR images, which can train and
infer quickly. In [182], a 3D Super-Resolution Convolutional Neural Network (3DSRCNN)
is proposed to improve the resolution of 3D-CT volumetric images. In [231], Zhao et al. proposed
a deep Channel Splitting Network (CSN) to ease the representational burden of deep models
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and further improve the SR performance of MR images. In [140], Peng et al. introduced a Spatially-
Aware Interpolation Network (SAINT) for medical slice synthesis to alleviate the memory con-
straint that volumetric data posed. In [44], Feng et al. proposed a Task Transformer Network
(T2Net) to allow the network to share representation and feature transfer between the two tasks
of reconstruction and SR. In [55], Georgescu et al. performed medical image SR using a multi-
modal LR input and propose a novel multimodal multi-head convolutional attention mechanism
for multi-contrast medical image SR.

All of these methods are the cornerstone of building the smart medical system and have great
research significance and value.

4 RECONSTRUCTION RESULTS

To help readers intuitively know the performance of the aforementioned SISR models, we provide
a detailed comparison of the reconstruction results of these models. Specifically, we collect 53
representative SISR models, including the most classic, latest, and SOTA SISR models.

In Table 2 , we provide the reconstruction results, training datasets, and model parameters
of these models. According to the results, we can find that: (1) Using a large dataset (e.g.,
DIV2K+Flickr2K) can make the model achieve better results; (2) It is not entirely correct that the
more model parameters, the better the model performance. This means that unreasonably increas-
ing the model size is not the best solution; (3) Transformer-based models show strong advantages,
whether in lightweight models or large models; (4) Research on the tiny model (parameters less
than 1000K) is still lacking. In the future, it is still important to explore more discriminative eval-
uation indicators and develop more effective SISR models.

5 REMAINING ISSUES AND FUTURE DIRECTIONS

It is true that the above models have achieved promising results and have greatly promoted the de-
velopment of SISR. However, we cannot ignore that there are still many challenging issues in SISR.
In this section, we point out some challenges and summarize some promising future directions.

5.1 Lightweight SISR for Edge Devices

With the huge development of the smart terminal market, research on lightweight SISR models
has gained increasing attention. Although existing lightweight SISR models have achieved a good
balance between model size and performance, we find that they still cannot be used in edge de-
vices (e.g., smartphones, and smart cameras). This is because the model size and computational
costs of these models still exceed the limits of edge devices. Therefore, exploring lightweight SISR
models that can be practical in use for edge devices has great research significance and commercial
value. To achieve this, more efficient network structures and mechanisms are worthy of further
exploration. Moreover, it is also necessary to use technologies like network binarization [128] and
network quantization [95] to further reduce the model size. Therefore, combining lightweight SISR
models with model compression schemes has great application value.

5.2 Flexible and Adjustable SISR

Although DL-based SISR models have achieved gratifying results, we notice a phenomenon that
the structure of all these models must be consistent during training and testing. This greatly limits
the flexibility of the model, making the same model difficult to be applied to different applications
scenarios. In other words, training specially designed models to meet the requirements of different
platforms in necessary for previous methods. However, it will require a great amount of manpower
and material resources. Therefore, it is crucial for us to design a flexible and adjustable SISR model
that can be deployed on different platforms without retraining while keeping good results.
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Table 2. PSNR/SSIM Comparison on Set5 (×4), Set14 (×4), and Urban100 (×4)

Models
Set5

PSNR/SSIM

Set14

PSNR/SSIM

Urban100

PSNR/SSIM
Training Datasets Parameters

SRCNN [207] 30.48/0.8628 27.50/0.7513 24.52/0.7221 T91+ImageNet 57K

ESPCN [151] 30.66/0.8646 27.71/0.7562 24.60/0.7360 T91+ImageNet 20K

FSRCNN [39] 30.71/0.8660 27.59/0.7550 24.62/0.7280 T91+General-100 13K

VDSR [83] 31.35/0.8838 28.02/0.7680 25.18/0.7540 BSD+T91 665K

LapSRN [87] 31.54/0.8855 28.19/0.7720 25.21/0.7560 BSD+T91 812K

DRRN [158] 31.68/0.8888 28.21/0.7721 25.44/0.7638 BSD+T91 297K

MemNet [159] 31.74/0.8893 28.26/0.7723 25.50/0.7630 BSD+T91 677K

AWSRN-S [165] 31.77/0.8893 28.35/0.7761 25.56/0.7678 DIV2K 588K

IDN [75] 31.82/0.8903 28.25/0.7730 25.41/0.7632 BSD+T91 678K

NLRN [113] 31.92/0.8916 28.36/0.7745 25.79/0.7729 BSD+T91 330K

ECBSR [223] 31.92/0.8946 28.34/0.7817 25.81/0.7773 DIV2K 682K

CARN-M [3] 31.92/0.8903 28.42/0.7762 25.62/0.7694 DIV2K 412K

SMSR [168] 32.12/0.8932 28.55/0.7808 26.11/0.7868 DIV2K 1006K

RFDN [114] 32.18/0.8948 28.58/0.7812 26.04/0.7848 DIV2K 441K

ESRT [119] 32.19/0.8947 28.69/0.7833 26.39/0.7962 DIV2K 751K

IMDN [74] 32.21/0.8949 28.58/0.7811 26.04/0.7838 DIV2K 715K

FDIWN [48] 32.23/0.8955 28.66/0.7829 26.28/0.7919 DIV2K 664K

MAFFSRN [137] 32.24/0.8952 28.61/0.7819 26.11/0.7858 DIV2K 550K

MSFIN [192] 32.28/0.8957 28.57/0.7813 26.13/0.7865 DIV2K 682K

LBNet [50] 32.29/0.8960 28.68/0.7832 26.27/0.7906 DIV2K 742K

LatticeNet-CL [123] 32.30/0.8958 28.65/0.7822 26.19/0.78555 DIV2K 777K

HPUN-L [154] 32.31/0.8962 28.73/0.7842 26.27/0.7918 DIV2K 734K

ELAN [222] 32.43/0.8975 28.78/0.7858 26.47/0.7980 DIV2K 601K

SwinIR-light [107] 32.44/0.8976 28.77/0.7858 26.47/0.7980 DIV2K 886K

CFIN [101] 32.49/0.8985 28.74/0.7849 26.39/0.7946 DIV2K 699K

DSRN [61] 31.40/0.8830 28.07/0.7700 25.08/0.7470 T91 1.2M

DRCN [84] 31.53/0.8838 28.02/0.7670 25.14/0.7510 T91 1.8M

MADNet [89] 31.95/0.8917 28.44/0.7780 25.76/0.7746 DIV2K 1M

SRMD [217] 31.96/0.8925 28.35/0.7787 25.68/0.7731 BSD+DIV2K+WED 1.6M

SRDenseNet [162] 32.02/0.8934 28.50/0.7782 26.05/0.7819 ImageNet 2.0M

SRResNet [91] 32.05/0.8910 28.49/0.7800 ——-/——- ImageNet 1.5M

MSRN [98] 32.07/0.8903 28.60/0.7751 26.04/0.7896 DIV2K 6.3M

CARN [3] 32.13/0.8937 28.60/0.7806 26.07/0.7837 BSD+T91+DIV2K 1.6M

SeaNet [43] 32.33/0.8970 28.81/0.7855 26.32/0.7942 DIV2K 7.4M

CRN [3] 32.34/0.8971 28.74/0.7855 26.44/0.7967 DIV2K 9.5M

EDSR [108] 32.46/0.8968 28.80/0.7876 26.64/0.8033 DIV2K 43M

RDN [228] 32.47/0.8990 28.81/0.7871 26.61/0.8028 DIV2K 22.6M

DBPN [62] 32.47/0.8980 28.82/0.7860 26.38/0.7946 DIV2K+Flickr2K 10M

(Continued)
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Table 2. Continued

Models
Set5

PSNR/SSIM

Set14

PSNR/SSIM

Urban100

PSNR/SSIM
Training Datasets Parameters

SRFBN [106] 32.47/0.8983 28.81/0.7868 26.60/0.8015 DIV2K+Flickr2K 3.63M

MDCN [97] 32.48/0.8985 28.83/0.7879 26.69/0.8049 DIV2K 4.5M

RNAN [227] 32.49/0.8982 28.83/0.7878 26.61/0.8023 DIV2K 7.5M

SRRFN [99] 32.56/0.8993 28.86/0.7882 26.78/0.8071 DIV2K 4.2M

RCAN [226] 32.63/0.9002 28.87/0.7889 26.82/0.8087 DIV2K 16M

SAN [33] 32.64/0.9003 28.92/0.7888 26.79/0.8068 DIV2K 15.7M

HAN [138] 32.64/0.9002 28.90/0.7890 26.85/0.8094 DIV2K 16.1M

RFANet [115] 32.66/0.9004 28.88/0.7894 26.92/0.8112 DIV2K 11M

ENLCN [197] 32.67/0.9004 28.94/0.7892 27.12/0.8141 DIV2K 43.6M

DRN-S [60] 32.68/0.9010 28.93/0.7900 26.84/0.8070 DIV2K+Flickr2K 4.8M

CRAN [229] 32.72/0.9012 29.01/0.7918 27.13/0.8167 DIV2K 14.9M

SwinIR [107] 32.92/0.9044 29.09/0.7950 27.45/0.8254 DIV2K+Flickr2K 11.8M

CAT-A [27] 33.08/0.9052 29.18/0.7963 27.89/0.8339 DIV2K+Flickr2K 16.6M

GRL-B [103] 33.10/0.9094 29.37/0.8058 28.53/0.8504 DIV2K+Flickr2K 20.2M

HAT-L [24] 33.30/0.9083 29.38/0.8001 28.37/0.8447 DIV2K+Flickr2K 40.2M

Meanwhile, the training datasets and the number of model parameters are provided. It is worth noting that the upper

part of the table is lightweight models with parameters less than 1M (M=million) and they are sorted in ascending

order by PSNR results on Set5. Meanwhile, the best results are highlighted.

5.3 New Loss Functions and Assessment Methods

In the past, most SISR models relied on L1 loss or MSE loss. Although some other new loss functions
like content loss, texture loss, and adversarial loss have been proposed, they still cannot achieve
a good balance between reconstruction accuracy and perceptual quality. Therefore, it remains an
important research topic to explore new loss functions that can ease the perception-distortion
tradeoff. Meanwhile, some new assessment methods are subjective and unfair. Therefore, new
assessment methods that can efficiently reflect image perception and distortion at the same time
are also essential.

5.4 Mutual Promotion with High-Level Tasks

As we all know, high-level computer vision tasks (e.g., image classification, image segmentation,
and image analysis) are highly dependent on the quality of the input image, so SISR technology
is usually used for pre-processing. Meanwhile, the quality of the SR images will greatly affect the
accuracy of these tasks. Therefore, integrate image SR with high-level tasks has become a hot topic
in recent years. To achieve this, Zangeneh et al. [213] proposed a novel nonlinear coupled mapping
architecture using two deep convolutional neural networks to project the LR and HR face images
into a common space to achieve LR face recognition; Wang et al. [170] proposed a dual SR learning
method for semantic segmentation, which integrate image SR with semantic segmentation into a
end-to-end model; Xiang et al. [199] boosted high-level vision with joint compression artifacts
reduction and SR. Although these methods combine SR with high-level tasks and achieve good
results, they focus more on the results of high-level vision tasks and ignore the use of feedback
from other tasks to further improve the quality of SR images. Therefore, we recommend using the
accuracy of high-level CV tasks as an evaluation indicator to measure the quality of the SR image.
Meanwhile, we can design some loss functions related to high-level tasks, thus SISR and other
tasks can promote and learn from each other.
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5.5 Efficient and Accurate Real SISR

Real SISR is destined to become the future mainstream in this field. Therefore, it will inevitably
become the focus of researchers in the next few years. On one hand, a sufficiently large and accu-
rate real image dataset is critical to Real SISR. To achieve this, in addition to the manual collection,
we recommend using generative technology to simulate the images, as well as using the GAN to
simulate enough degradation modes to build the large real dataset. On the other hand, considering
the difficulty of constructing real image datasets, it is important to develop unsupervised learning-
based SISR, meta-learning-based SISR, and blind SISR. Among them, unsupervised learning can
make the models get rid of the dependence on the dataset, meta-learning can help models migrate
from simulated datasets to real data with simple fine-tuning, and blind SISR can display or implic-
itly learn the degradation mode of the image, and then reconstruct high-quality SR images based
on the learned degradation mode. Although plenty of blind SISR methods have been proposed,
they always have unstable performance or have strict prerequisites. Therefore, combining them
may bring new solutions for real SISR.

5.6 Efficient and Accurate Scale Arbitrary SISR

SISR has seen its applications in diverse real-life scenarios and users. Currently, most DL-based
SISR models can only be applied to one or a limited number of multiple upsampling factors. There-
fore, it is necessary to develop a flexible and universal scale arbitrary SISR model that can be
adapted to any scale, including asymmetric and non-integer scale factors. Although a few scale-
arbitrary SISR methods have also been proposed, they tend to lack the flexibility to use and the
simplicity to be implemented, which greatly limits their application scenarios. Therefore, it is of
great significance to explore a simple and flexible CNN-based accurate scale-arbitrary SISR model
like Bicubic.

5.7 Consider the Characteristics of Different Images

Although a series of models have been proposed for domain-specific applications, most of them
directly transfer the SISR methods to these specific fields. This is the simplest and most feasible
method, but it will also inhibit the model performance since they ignore the data structure charac-
teristics of the domain-specific images. Therefore, fully mining and using the potential prior and
data characteristics of the domain-specific images is beneficial for efficient and accurate domain-
specific SISR model construction. In the future, it will be a trend to further optimize the existing
SISR models based on prior knowledge and the characteristics of the domain-specific images.

6 CONCLUSION

In this survey, we provided a comprehensive overview of DL-based SISR methods according to their
targets, including reconstruction efficiency, reconstruction accuracy, perceptual quality, and other
technologies that can further improve model performance. Meanwhile, we provided a detailed
introduction to the related works of SISR and introduced a series of new tasks and domain-specific
applications extended by SISR. In order to view the performance of each model more intuitively,
we also provided a detailed comparison of reconstruction results. Moreover, we provided some
underlying problems in SISR and introduced several new trends and future directions worthy of
further exploration. We believe that the survey can help researchers better understand this field
and further promote the development of this field.
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