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Abstract— Recently, CNN and Transformer hybrid networks
demonstrated excellent performance in face super-resolution
(FSR) tasks. Because of numerous features at different scales
in hybrid networks, how to fuse these multiscale features
and promote their complementarity is crucial for enhanc-
ing FSR. However, existing hybrid network-based FSR methods
ignore this, only simply combining the Transformer and CNN.
To address this issue, we propose an attention-guided multiscale
interaction network (AMINet), which incorporates local and
global feature interactions, as well as encoder–decoder phase
feature interactions. Specifically, we propose a local and global
feature interaction (LGFI) module to promote the fusion of
global features and the local features extracted from different
receptive fields by our residual depth feature extraction (RDFE)
module. Additionally, we propose a selective kernel attention
fusion (SKAF) module to adaptively select fusions of different
features within the LGFI and encoder–decoder phases. Our
above design allows the free flow of multiscale features from
within modules and between the encoder and decoder, which
can promote the complementarity of different scale features
to enhance FSR. Comprehensive experiments confirm that our
method consistently performs well with less computational con-
sumption and faster inference.

Index Terms— Attention-guided, face super-resolution (FSR),
hybrid networks, multiscale interaction.

I. INTRODUCTION

FACE super-resolution (FSR), also known as face hal-
lucination, aims at restoring high-resolution (HR) face
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images from low-resolution (LR) face images [1]. In contrast
to standard image super-resolution, the primary objective of
FSR is to reconstruct as many facial structural features as
possible (i.e., the shape and contour of facial components).
In practical scenarios, a range of face-specific tasks, such
as face detection [2] and face recognition [3], require HR
face images. However, the quality of captured face images is
frequently diminished due to variations in hardware configura-
tion, positioning, and shooting angles of the imaging devices,
seriously affecting the above downstream tasks. Therefore,
FSR has garnered increasing attention in recent years.

Recently, because of the advantages exhibited by hybrid
networks [5] of CNNs and Transformers in FSR, this type
of method has gained increased attention. Specifically, CNN-
based FSR methods [6] generally do not require large
computational costs. Still, they specialize in extracting local
details, such as the local texture of the face and color, and
are unable to model long-range feature interaction, such as the
global profile of the face. Transformer-based FSR methods [7]
can simulate global modeling well, but their computational
consumption is huge. Hybrid FSR methods leverage the
strengths of both architectures, enabling efficient extraction
of both local and global features while maintaining a rea-
sonable computational overhead. The impressive performance
of hybrid-based FSR methods comes from numerous features
extracted inside their networks at different scales, such as
global features from self-attention (SA), local features from
convolution, and features from different stages of the encoder–
decoder, which facilitates models to refine local details and
global contours.

However, while existing hybrid-based FSR methods con-
sider utilizing features from different scales to improve
FSR, they ignore the problem of how to fuse these mul-
tiscale features to make their properties better complement
each other. For example, FaceFormer [8] simply parallelizes
the connected CNN modules and the window-based Trans-
former [9] modules. SCTANet [10] also only juxtaposes spatial
attention-based residual blocks and multihead SA in designed
modules. CTCNet [5] simply connects the CNN module in
tandem with the Transformer module. These methods overlook
the importance of blending multiscale features in a comple-
mentary manner and enabling smooth information flow across
different scales to refine facial details effectively.

To address this problem, we propose an attention-guided
multiscale interaction network (AMINet) for FSR in this
work. Our AMINet fuses multiscale features in two main
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Fig. 1. Model complexity studies for ×8 FSR on CelebA test set [4]. Our
AMINet achieves an excellent balance among model size, model performance,
and inference speed.

ways, including the fusion of features obtained from SA and
convolution, and the fusion of features at different stages
of the encoder–decoder. Specifically, we design a local and
global feature interaction (LGFI) module to adaptively fuse
global facial and local features with different receptive fields
obtained by convolutions. In LGFI, SA is responsible for
extracting global features, while our residual depth feature
extraction (RDFE) module extracts local features at different
scales using separable convolutional kernels of different sizes,
and our selective kernel attention fusion (SKAF) module is
responsible for weighted fusion of these two parts of features
for our model to adaptively perform selective fusion during
training. In addition, we also utilize our SKAF as a crucial
fusion module in our encoder and decoder feature fusion
(EDFF) module to further perform feature communications
of our method by fusing features at different scales from the
encoder–decoder processes.

Our above design greatly enhances the flow and exchange
of features at different scales within the model and improves
the representation of our model. As a result, our method can
obtain a more powerful feature representation than existing
FSR methods. As shown in Fig. 1, our method can achieve the
best FSR performance with a smaller size and faster inference
speed, demonstrating our method’s effectiveness. In summary,
the main contributions are as follows.

1) We design an LGFI to differ from the traditional Trans-
former by allowing free flow and selective fusion of local
and global features within the module.

2) We design an RDFE, which enables better refinement of
facial details by fusion and refinement of local features
extracted by convolutional kernels of different sizes.

3) We design the SKAF to help selective fusions of
different-scale features within LGFI and EDFF by
selecting appropriate convolutional kernels.

II. RELATED WORK

A. Face Super-Resolution

Early deep learning approaches focused on leveraging facial
priors as guidance to enhance FSR accuracy [11]. For instance,

Chen et al. [12] developed an end-to-end prior-based network
that utilized facial landmarks and heatmaps to generate FSR
images. Similarly, Kim et al. [13] employed a face alignment
network for landmark extraction in conjunction with a pro-
gressive training technique to produce realistic face images.
Ma et al. [14] introduced DICNet, which iteratively integrates
facial landmark priors to enhance image quality at each step.
Hu et al. [15] explored the use of 3-D shape priors to
better capture and define sharp facial structures. While these
methods have advanced FSR, they require additional labeling
of training datasets. Moreover, inaccuracies in prior estimation
can significantly diminish FSR performance, especially when
dealing with highly blurred face images.

Attention-based FSR methods have been proposed to
promote FSR to avoid the adverse effects of inaccurate
prior estimates on FSR. Zhang and Ling [16] proposed a
supervised pixel-by-pixel generation of the adversarial net-
work to improve face recognition performance during FSR.
Chen et al. [17] proposed the SPARNet, which can focus
on important facial structure features adaptively by using
spatial attention in residual blocks. Lu et al. [18] proposed
a partial attention mechanism to enhance the consistency of
the fidelity of facial detail and facial structure. Bao et al. [19]
introduced the equalization texture enhancement module to
enhance the facial texture detail through histogram equal-
ization. Wang et al. [20] critically introduced the Fourier
transform into FSR, fully exploring the correlation between
spatial domain features and frequency domain features.
Shi et al. [21] designed a two-branch network, which intro-
duces a convolution based on local changes to enhance the
ability of the convolution. Bao et al. [10] improves the
interaction ability of regional and global features through
designed hybrid attention modules. Li et al. [22] designed a
wavelet-based network to reduce the loss of downsampling
in the encoder–decoder. Although the above methods can
reconstruct reasonable FSR images, they cannot promote the
efficient fusion of local features with global features and
different features at different stages of the encoder–decoder,
affecting FSR’s efficiency and accuracy.

B. Attention-Based Super-Resolution

The attention mechanism can improve the super-resolution
accuracy of models due to its flexibility in focusing on key
areas of facial features. In the super-resolution task, different
variants of the attention mechanism include SA, spatial atten-
tion, channel attention, and hybrid attention [23].

Zhang et al. [24] inserted channel attention into residual
blocks to enhance model representation. Xin et al. [25] utilized
channel attention plus residual mechanisms to combine a mul-
tilevel information fusion strategy. Chen et al. [17] enhanced
FSR by utilizing an improved facial spatial attention that coop-
erated with the hourglass structure. Gao et al. [26] performed
shuffling to hybrid attention. Wang et al. [27] constructed a
simplified feed-forward network (FFN) using spatial attention
to reduce parameters and computational complexity. To model
long-range feature interaction, the SA in Transformer [28] has
been widely used in super-resolution. Gao et al. [29] reduced
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Fig. 2. Network structure of our AMINet, which is a U-shaped CNN-transformer hierarchical architecture with three distinct stages: encoding, bottleneck,
and decoding.

costs by utilizing the recursive mechanism on SA. Li et al. [30]
and [31] combined SA and convolutions to complement each
other’s required features. Zeng et al. [32] introduced an SA
network that investigates the relationships among features at
various levels. Shi et al. [21] enhanced FSR by mitigating
the adverse effects of inaccurate prior estimates through a
parallel SA mechanism, effectively capturing both local and
nonlocal dependencies. To combine the advantages of different
attentions, Yang and Qi [33] integrated channel attention with
spatial attention to enhance feature acquisition and correlation
modeling. Bao et al. [10] and Gao et al. [5] employed
spatial attention and SA to capture facial structure and details.
Zhang and Qi [34] employed a hybrid attention that com-
bines SA, spatial attention, and channel attention to optimize
fine-grained facial details and broad facial structure. Unlike
the above attention-based methods that enhance model repre-
sentation, we utilize attention to learn features from different
receptive fields, allowing our network to adaptively select the
appropriate convolutional kernel size to match the multiscale
feature fusion. This design enables our network to perform
multiscale feature extraction and improve the integration of
features across various scales, leading to enhanced perfor-
mance and greater adaptability.

III. PROPOSED METHOD

A. Overview of AMINet

As illustrated in Fig. 2, our proposed AMINet features
a U-shaped CNN-Transformer hierarchical architecture with
three distinct stages: encoding, bottleneck, and decoding. For
an LR input face image ILR ∈ R3×H×W , in the encoding stage,
our network aims to extract features at different scales and

capture multiscale feature representations of the input image
to get the facial feature F3 ∈ RC×H×W . Then, the bottleneck
stage network continues to refine the feature F3 and provides
a more informative representation to get the refined feature
F4 for the subsequent reconstruction phase. In decoding,
the network focuses on feature upsample and facial detail
reconstruction. Meanwhile, an interactive connection is used
between the encoding and decoding stages to ensure the
features are fully integrated throughout the network. We can
get the reconstructed face feature F7 with rich facial details
through the above operators. Finally, through a convolution
with reduced channel dimensions plus a residual connection,
we get the HR output face image IHR ∈ R3×H×W .

1) Encoding Stage: The encoding stage in our network
aims to extract facial features of different scales. In this stage,
given a degraded face image ILR ∈ R3×H×W , first, a 3 × 3
convolution is used to extract shallow facial features. Then,
extracted facial features are further refined by three encoder
stages. Each encoder comprises our designed LGFI module
and a downsampling operator. After each encoder, the input
face feature’s channel count will be doubled, and the size of
the image of the input face feature will be halved. As shown
in Fig. 2, the features obtained after three encoders are as
follows: F1 ∈ R2C×(H/2)×(W/2), F2 ∈ R4C×(H/4)×(W/4), and
F3 ∈ R8C×(H/8)×(W/8).

2) Bottleneck Stage: In the bottleneck stage between the
encoding and decoding stages, the obtained encoding features
are designed to be fine-grained. F4 ∈ R8C×(H/8)×(W/8) is
obtained through the bottleneck stage. In this stage, we con-
tinue to use two LGFIs to refine and enhance encoding features
to ensure they are better utilized in the decoding stage. After
this stage, our model can continuously enhance the information
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Fig. 3. Architecture of (a) RDFE module and (b) SA, respectively.

about the facial structure at different scales, thus improving the
perception of facial details.

3) Decoding Stage: In the decoding stage, there are three
decoders. We focus on multiscale feature fusion, aiming
at reconstructing high-quality face images at this stage.
As depicted in Fig. 2, each decoder includes an upsampling
operation, an EDFF, and an LGFI. Each upsampling opera-
tor halves the input feature channel counts while doubling
the width and weight of the input facial feature. Com-
pared to encoding stages, decoding stages additionally use
our proposed SKAF to adaptively and selectively fuse dif-
ferent scale features from the encoder and decoder stages.
Through this design, different-scale features can interact to
recover more detailed face features. The features obtained
after three decoders are as follows: F5 ∈ R4C×(H/4)×(W/4),
F7 ∈ RC×H×W . Finally, a 3 × 3 convolution unit is utilized
to transform our obtained deep facial feature into an output
FSR image ISR.

B. LGFI Module

In our AMINet, LGFI is mainly used for local and global
facial feature extraction. As shown in Fig. 2, LGFI consists of
SA, an RDFE module, and an SKAF module, used for local
and global feature fusion and interaction, respectively. The
SA is designed to extract global features. At the same time,
RDEM is designed to extract local features at different scales
and enrich local facial details through multiple convolutional
kernels under numerous receptive fields. Specifically, the inte-
gration of local and global features is achieved through SKAF,
which adaptively weights and fuses multiscale information.
SKAF first extracts local and global features via convolutions
with different receptive fields and then computes their impor-
tance using average pooling. These computed weights are
applied to the corresponding features, facilitating an adaptive
fusion process. By dynamically selecting and emphasizing key
information, SKAF enhances the complementarity between
local textures and global structural cues, ultimately improving

facial detail reconstruction and overall super-resolution
performance.

1) Self-Attention: We utilize SA to extract global facial fea-
tures, which can effectively model the relationships between
distant features. Meanwhile, through the multihead mechanism
in SR, features can be captured from different subspaces,
improving the robustness and generalization ability of the
model. As illustrated in Fig. 3(b), we start by applying a
1 × 1 convolutional layer followed by a 3 × 3 depthwise
convolutional layer to combine pixel-level cross-channel infor-
mation and extract channel-level spatial context. From this
spatial context, we then generate Q, K , V ∈ RC×H×W . For an
input facial feature X ∈ RC×H×W , the process of obtaining
Q, K , V ∈ RC×H×W can be described as follows:

Q = Fdw3 (Fconv1 (X)) (1)
K = Fdw3 (Fconv1 (X)) (2)
V = Fdw3 (Fconv1 (X)) (3)

where Fconv1(·) is the 1 × 1 pointwise convolution and Fdw3(·)

is the 3 × 3 depthwise convolution.
Next, we reshape Q, K , and V into Q̂ ∈ RC×H W ,

K̂ ∈ RH W×C , and V̂ ∈ RC×H W , respectively. After that, the
dot product is multiplied by V to obtain weights Xw ∈

RC×H W , which facilitates the capturing of the important local
context in SA. Finally, we rearrange Xw into X̂w ∈ RC×H×W .
The above operations can be expressed as follows:

Xweighted = Softmax
(

Q̂ · K̂
/√

d
)

· V̂ (4)

Xsa = Fconv1
(
R

(
Xweighted

))
(5)

where Xsa is the attention map of SA, (d)1/2 is a factor used to
scale the dot product of K̂ and Q̂, R(·) stands for the rearrange
operation, and Xsa denotes the output of SA.

2) RDFE Module: As shown in Fig. 3(a), we design RDFE
to extract local facial features at different scales. Compared
with the traditional FFN, our RDFE is beneficial for process-
ing more complex features and multiscale features flexibly.
Specifically, for the input feature X ∈ RC×H×W , we use
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depthwise convolutions of 3 × 3, 5 × 5, and 7 × 7 to parallelly
extract three scales of facial features, which depthwise convo-
lution can reduce the computational complexity of the model,
while convolution with different kernel sizes can effectively
extract rich face details. The reason we employ depthwise
separable convolution is to significantly reduce computational
complexity while preserving local spatial features. In our
model, depthwise convolutions at different scales enable the
extraction of fine-grained facial details, such as textures and
edge information, across varying receptive fields, enhancing
the model’s ability to capture local features efficiently. The
above operations can be expressed as follows:

f1, f2, f3 = Fdw3 (X) , Fdw5 (X) , Fdw7 (X) (6)

where Fdw3, Fdw5, and Fdw7 are 3 × 3, 5 × 5, and 7 × 7
depthwise convolution, respectively. However, relying solely
on convolutions may lead to insufficient feature fusion across
scales, potentially introducing redundant information or affect-
ing the representation of key facial details. To address this
issue, we use an attention unit (AU) Fau to calculate the feature
weight of the fusion feature of three branches. Next, we use
the calculated weights to modulate the three-branch features
at different scales through elementwise multiplications. This
mechanism enables the model to dynamically balance the
contributions of multiscale features, effectively capturing key
facial details across varying receptive fields, thereby enhancing
detail restoration and overall generalization. To further refine
and reconstruct the weighted fused facial features, we apply
depthwise convolutions with kernel sizes of 3 × 3, 5 × 5, and
7 × 7, ensuring the joint optimization of local texture details
and global structural consistency. This collaborative refinement
ultimately leads to higher-quality facial reconstructions. The
above operations can be expressed as follows:

f ′
= Fau (Hcat ( f1, f2, f3)) (7)

f ′

1, f ′

2, f ′

3 = f1 (X) · f ′, f2 (X) · f ′, f3 (X) · f ′ (8)

where Hcat is a concat operator and Fau(·) indicates the
attention unit. Then, we aggregate the three branches’ features
to combine facial detail information under different receptive
fields. This process can be described as follows:

f ′′
= Hcat

(
Fconv1

(
f ′

1, f ′

2, f ′

3
))

+ X (9)

where Fconv1(·) represents 1 × 1 convolution. Finally,
we utilize a feature refinement module (FRM) to refine fea-
tures obtained from previous multiple branches. Specifically,
we begin by applying normalization and multiple 3 × 3 con-
volutional layers to refine the local facial context. Afterward,
the hourglass block further integrates multiscale information
to capture global and local relationships

f ′′′
= Ffrm

(
f ′′

)
(10)

where Ffrm(·) indicates the feature refinement module.
3) SKAF Module: Inspired by SKNet [35] and

LSKNet [36], as shown in Fig. 2, we design an SKAF module
to give our model the ability to select local and global features
required for reconstruction for fusion interaction. Specifically,
SKAF first extracts both local and global features using

convolutions with different receptive fields. It then computes
feature importance through an average pooling operation,
which was previously not explicitly shown in the diagram.
Finally, an adaptive weighting mechanism selects and fuses
the most relevant local and global information, enabling
SKAF to dynamically emphasize critical features under
varying receptive fields. This design enhances the model’s
capacity for feature selection, improving both its performance
and generalization in FSR. Given feature X ∈ RC×H×W

obtained by the SA and the RDFE, we first fuse the local
and global features extracted by a 5 × 5 convolution and
a 7 × 7 convolution to get a hybrid feature X . This operation
can be expressed as follows:

X ′

1, X ′

2 = Fconv5 (X) , Fconv7 (X) (11)

X3 = Hcat
(
X ′

1, X ′

2
)

(12)

where Fconv5(·) represents 5 × 5 convolution, Fconv7(·) rep-
resents 7 × 7 convolution, and Hcat(·) indicates the concat
operation along the channel dimension. Then, we impose
pooling to learn the weight of the obtained hybrid features,
where the weight reflects the importance of features under
different receptive fields. The process of obtaining the weight
for selecting required facial features is as follows:

X3 = Hsig
(
Hcat

(
Havep

(
X3

)
, Hmaxp

(
X3

)))
(13)

where Havep(·), Hmaxp(·), and Hsig(·) indicate the average and
max pooling operation along the channel direction and sig-
moid function, respectively. Finally, we multiply the weights
obtained from the above calculations with the local and global
features, respectively. Thus, our SKAF can adaptively select
the important local and global information required for recon-
struction. The process of obtaining local and global features
X ′, X ′′ by adaptive weight selection is as follows:

X ′, X ′′
= Hcs

(
X3

)
(14)

where Hcs(·) indicates the feature separation operation along
the channel dimension. Through the above operators, we can
get the adaptive selected local and global features.

C. EDFF Module

To fully utilize the multiscale features extracted from the
encoding and decoding stage, we introduce an EDFF to
fuse different features, enabling our AMINet with better
feature propagation and representation capabilities. As shown
in Fig. 2, our EDFF mainly utilizes our proposed SKAF to
fuse and select different-scale features required for recon-
struction. Given the feature X E ∈ RC×H×W , the feature
X D ∈ RC×H×W is from the decoding stage and the encoding
stage, respectively. First, we concatenate features from the
encoding and decoding stages along the channel dimension.
Then, a 1 × 1 convolution is used to reduce the channel
counts and reduce the process’s computational costs to obtain
two weights through our SKAF, which can be expressed as
follows:

X ′, X ′′
= Fskaf (Fconv1 (Hcat (X E , X D))) (15)
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where Fskaf(·) represents the SKAF module, Fconv1(·) stands
for the 1 × 1 convolutional layer, and Hcat(·) denotes the oper-
ation of concatenating features across the channel dimension.
Next, we feed the two obtained weights into two branches for
multiplication. Through this operator, we obtain the selected
facial features from hybrid features obtained by fusing the
encoding and decoding features. Finally, we add the features
of the two branches

X E D = X E · X ′
+ X D · X ′′. (16)

Through the above operators, we can complete the process of
the adaptive fusion of encoding and decoding features.

D. Loss Functions

As for the loss of our AMINet, given a dataset
{I i

LR, I i
HR}

N
i=1, we optimize our AMINet by minimizing the

pixel-level loss function

L (2) =
1
N

N∑
i=1

∥∥∥FAMINet

(
I i
LR, 2

)
− I i

HR

∥∥∥
1

(17)

where N denotes the paired training face image counts. I i
LR

and I i
HR are the face LR image and HR image of the i th pair,

respectively. Meanwhile, FAMINet(·) and 2 denote the AMINet
and the number of parameters of AMINet, respectively.

Since the GAN-based methods [37], [38] can get better
perceptual qualities, we expand our AMINet to AMIGAN to
generate more high-quality SR results. The loss function used
in training AMIGAN consists of the following three parts.

1) Pixel Loss: Pixel-level loss is used to reduce the pixel
difference between the SR and HR images

Lpix =
1
N

N∑
i=1

∥∥∥G
(

I i
LR

)
− I i

HR

∥∥∥
1

(18)

where G indicates the AMIGAN generator.
2) Perceptual Loss: To enhance the visual quality of super-

resolution images, we apply perceptual loss. This involves
using a pretrained VGG19 [39] model to extract facial features
from both the HR images and our generated FSR images.
Then, we compare the obtained perceptual features of HR
and FSR images to constrain the generation of FSR features.
Therefore, the perceptual loss can be described as follows:

Lpcp =
1
N

N∑
i=1

LVGG∑
l=1

1
M l

VGG

∥∥∥ f l
VGG

(
I i
SR

)
− f l

VGG

(
I i
HR

)∥∥∥
1

(19)

where f l
VGG represents the feature map from the lth layer

of the VGG network, LVGG is the total number of layers in
VGG, and M l

VGG indicates the quantity of elements within
that feature map.

3) Adversarial Loss: GANs have been shown to be effec-
tive in reconstructing photorealistic images [37], [38]. GAN
generates FSR results through the generator while using the
discriminator to distinguish between ground truth and FSR
results, which ultimately enables the generator to generate

realistic FSR results in the process of constant confrontation.
This process is denoted as follows:

Ldis = −E
[
log (D (IHR))

]
− E

[
log (1 − D (G (ILR)))

]
.

(20)

Additionally, the generator tries to minimize

Ladv = −E
[
log (D (G (ILR)))

]
. (21)

Thus, AMIGAN is refined by minimizing the following total
objective function:

L = λpixLpix + λpcpLpcp + λadvLadv (22)

where λpix, λpcp, and λadv represent the weighting factors for
the corresponding pixel loss, perceptual loss, and adversarial
loss, respectively.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

We utilize the CelebA [4] dataset for training and evalu-
ation on CelebA [4], Helen [40], and SCface [41] datasets,
respectively. We center-crop the aligned faces and resize
them to 128 × 128 pixels to obtain HR images. These HR
images are then downsampled to 16 × 16 pixels using bicubic
interpolation, producing the corresponding LR images. In our
experiments, we randomly chose 18 000 CelebA images for
training and 1000 for testing. In addition, we also utilize
the SCface test set as a real evaluation dataset. To measure
the quality of FSR results, we use PSNR [42], SSIM [42],
LPIPS [43], VIF [44], and FID [45].

B. Implementation Details

We implement our model using PyTorch on an NVIDIA
GeForce RTX 3090. The network is optimized using the Adam
optimizer, with parameters set to β1 = 0.9 and β2 = 0.99.
The initial learning rate is 2 × 10−4, with separate learning
rates for the generator and discriminator set at 1 × 10−4

and 4 × 10−4, respectively. The loss function weights are
configured as λpix = 1, λpcp = 0.01, and λadv = 0.01.

C. Ablation Studies

1) Study of LGFI: LGFI is proposed to extract local features
and global relationships of images, which represents a new
attempt to interact with local and global information. To verify
the reasonableness of our design of LGFI, as shown in
Table I, we design four ablation models. The first model
removes the SA, labeled “LGFI w/o SA.” The second model
removes RDFE, labeled as “LGFI w/o RDFE.” The third
model removes SKAF, labeled as “LGFI w/o SKAF.” We have
the following observations.

1) Introducing SA and RDFE alone can improve model
performance. This is because the above two modules
can capture local and global features to promote facial
feature reconstruction, including facial details and over-
all contours.

2) Model performance has been significantly increased
by introducing the SKAF to capture the relationship
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TABLE I
VERIFY THE EFFECTIVENESS OF LGFI (CelebA, ×8)

Fig. 4. Visual comparison of various outputs of LGFI.

TABLE II
QUANTITATIVE COMPARISON BETWEEN LGFI AND TRADITIONAL

TRANSFORMER AS SHOWN IN FIG. 6 (CelebA, ×8)

TABLE III
PERFORMANCE AND COMPUTATIONAL COST COMPARISON

BETWEEN RDFE AND FFN (CelebA, ×8)

between local and global facial features. This is because
our SKAF can promote interaction between our SA
and RDFE, integrating richer information and providing
supplementary information for the final FSR.

Furthermore, we provide a visual comparison in Fig. 4,
illustrating the impact of removing certain components from
LGFI. The reconstructed images exhibit noticeable blurring
or artifacts, highlighting the importance of these components.
Additionally, Fig. 5 presents heatmap visualizations of the
outputs from different components within LGFI, with their
corresponding locations in the network indicated in Fig. 2.
Specifically, SKAF effectively integrates the global contours
captured by SA with the regional features extracted by RDEF.
This integration enables the model to focus more on essential
facial structures and components while reducing emphasis on
less critical details, such as hair. In addition, we quantitatively
evaluate the computational efficiency of each module by
comparing inference latency and parameter counts in Table I,
where the RDEF module has the greatest impact on both
inference time and parameter counts. This is attributed to its
multibranch fusion strategy and deep refinement operations,
which introduce additional computational complexity. How-
ever, RDEF delivers substantial performance improvements,
which is overall worthwhile.

2) Comparison Between LGFI and Transformer: As shown
in Fig. 6, LGFI uses a dual-branch structure to represent
the local and global features. In contrast, the traditional
Transformer in Restormer [50] uses a serial structure to link
local and global features. To verify the effectiveness of LGFI,
we replace all LGFIs with Transformers and conduct com-

Fig. 5. Heatmap outputs of different parts of LGFI.

Fig. 6. Comparison of LGFI and Transformer structures, where SA is
self-attention, RDFE and FFN are CNN parts, and SKAF is our feature fusion
module.

parative experiments with similar parameters between the two
models. From Table II, the network’s performance using LGFI
is better when the two networks maintain similar parameters.
This is because LGFI utilizes the features of both local and
global branches for interaction, facilitating the communication
of multiscale facial information.

3) Comparison Between RDFE and FFN: The FFN per-
forms independent nonlinear transformations of the inputs at
each position to help the Transformer capture local features,
but it cannot extract multiscale features, which is not favorable
for accurate FSR. In contrast, our RDFE can extract multiscale
local features well. To compare RDFE and FFN, we replace
RDFE with FFN while keeping the parameters of the two
models similar. As shown in Table III, since FFN’s ability to
capture feature interactions is limited compared to our RDFE,
which utilizes multiple branches to capture different receptive
field features, our RDFE performs better than FFN with similar
computational cost.
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TABLE IV
ABLATION STUDY OF OUR RDFE (CelebA, ×8)

TABLE V
ABLATION STUDY OF OUR SKAF (CelebA, ×8)

4) Effectiveness of RDFE: In RDFE, a three-branch net-
work guided by an attention mechanism is used for deep
feature extraction, and the FRM is used to enrich feature
representation. To verify the effectiveness of RDFE, we con-
duct multiple ablation experiments. We designed five improved
models. The first model adopts a single branch structure
of 3 × 3 depthwise convolution, labeled as “Single
path (3 × 3 dw).” The second model adopts a single branch
structure of 5 × 5 depthwise convolution, labeled as “Single
path (5 × 5 dw).” The third model adopts a single branch
structure of 7 × 7 depthwise convolution, labeled as “Single
path (7 × 7 dw).” The fourth model removes AUs labeled as
“w/o AU.” The fifth model removes the FRM, labeled as “w/o
FRM”. From Table IV, we have the following observations.

1) By comparing the first three rows and the last row of the
table, it can be seen that multiscale branching facilitates
the model’s performance due to its ability to extract face
features at different levels.

2) From the comparison between the second and the last
rows of the table and the last row, it can be seen that
using AUs to guide three-branch feature extraction can
enable the model to adaptively allocate weights, enhance
the representation of important facial information, and
thus improve model performance.

3) From the last two rows of the table, we can conclude
that the FRM can further integrate multiscale informa-
tion, refine multiscale fusion features, and thus improve
performance.

5) Effectiveness of SKAF: SKAF is an important com-
ponent of LGFI, facilitating information exchange between
local and global branches. We perform ablation experiments to
validate our SKAF module’s impact and assess the combined
approach’s practicality. Since SKAF consists of dual-branch
convolutional layers, maximum pooling layers, and average
pooling layers, we verify the effectiveness of module com-
ponents in SKAF. From Table V, we have the following
observations.

1) From the last three rows of the table, we find that using
a single pooling branch results in reduced performance,

TABLE VI
ABLATION STUDY OF OUR EDFF (CelebA, ×8)

while using average pooling alone results in lower
performance than using maximum pooling alone. This
is because the salient features of the face are the key
to facial recovery, with maximum pooling focusing on
salient facial feature information. In contrast, average
pooling focuses on the overall information of the face.
Compared to the third and fifth rows, it can be concluded
that using both 5 × 5 and 7 × 7 simultaneously
can improve performance and fully utilize key facial
information under different receptive fields.

6) Study of EDFF: This section presents a set of exper-
iments to validate the effectiveness of our EDFF, a module
tailored for fusing multiscale features. We add EDFF to
SPARNet [17], which uses EDFF to connect the encoding
and decoding stages in SPARNet and send them to the next
decoding stage. Additionally, we add EDFF to SFMNet [20],
and the specific operation is the same as in SPARNet. From the
results of Table VI, we can see that although the parameters of
both models increase slightly, the performance of the models
improves, which precisely proves that EDFF is helpful for
feature fusion in the encoding and decoding stages.

D. Comparisons With Other Methods

We compare AMINet with existing FSR methods, including
SAN [46], RCAN [24], HAN [47], SwinIR [9], FSRNet [12],
DICNet [14], FACN [48], SPARNet [17], SISN [18], AD-
GNN [49], Restormer-M [50], LAAT [51], ELSFace [52],
SFMNet [20], and SPADNet [53].

1) Comparisons on CelebA Dataset: We conduct a quan-
titative comparison of AMINet against existing FSR methods
on the CelebA test set, as detailed in Table VII. Our AMINet
outperforms all evaluation metrics, including PSNR, SSIM,
LPIPS, and VIF, which fully demonstrates its efficiency. This
strongly validates the effectiveness of AMINet. Additionally,
the visual comparison in Fig. 7 reveals that previous FSR
methods struggled to reproduce facial features like the eyes
and mouth accurately. In contrast, AMINet excels at preserving
the facial structure and producing more precise results.

2) Comparisons on Helen Dataset: We evaluate our method
on the Helen test set to further assess AMINet’s versatility.
Table VII provides a quantitative comparison of ×8 FSR
results about it, where AMINet achieves the better perfor-
mance. Visual comparisons in Fig. 8 indicate that existing
FSR methods struggle to maintain accuracy, leading to blurred
shapes and a loss of facial details. In contrast, AMINet
successfully preserves facial contours and details, reinforcing
its effectiveness and adaptability across different datasets.
In addition, we provide a visual comparison of face parsing
maps for recovered face images, as shown in Fig. 9, which
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TABLE VII
QUANTITATIVE COMPARISONS OF OURS AND EXISTING FSR METHODS FOR ×8 FSR ON CelebA AND HELEN TEST SETS

Fig. 7. Visual comparisons for ×8 FSR on CelebA [4] test set. Our method can recover accurate face images.

clearly shows that our AMINet facilitates downstream tasks
such as face parsing maps segmentation.

3) Comparisons With GAN-Based Methods: We present
AMIGAN as a novel approach to enhance the visual fidelity of
image restoration. To demonstrate its effectiveness, we com-
pare AMIGAN with existing GAN-based methods, including
FSRGAN [12], DICGAN [14], SPARGAN [17], and SFM-
GAN [20]. In addition to conventional metrics, we adopt
FID [45] for quantitative evaluation. Results on the Helen
dataset (Table VIII) show that AMIGAN consistently outper-
forms prior methods. Visual comparisons in Fig. 10 further
highlight AMIGAN’s superior ability to restore fine facial

structures and texture details, particularly around the mouth
and nose, delivering clearer and more realistic reconstructions
with fewer artifacts.

4) Comparisons on Real-World Surveillance Faces: All the
above comparisons are tested on synthetic test sets, which
fail to simulate real-world scenarios accurately. To further
evaluate our model’s performance in real-world conditions,
we also conduct experiments using low-quality face images
from the SCface dataset [41]. As shown in Fig. 11, we compare
the reconstruction results. From this figure, we find that the
reconstruction results of face prior-based methods are not
satisfactory. The challenge lies in accurately estimating priors
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Fig. 8. Visual comparisons for ×8 FSR on Helen [40] test set. Our method can recover accurate face images.

Fig. 9. Comparisons of face parsing on the Helen test set.

Fig. 10. Visual comparisons of existing GAN-based FSR methods on the
Helen test set. Our AMIGAN can reconstruct high-quality face images with
clear facial components.

from real-world LR facial images. Incorrect prior information
can lead to misleading guidance during the reconstruction
process. In contrast, our AMINet can restore clearer face

TABLE VIII
QUANTITATIVE COMPARISON OF OURS WITH OTHER GAN-BASED

METHODS (HELEN, ×8)

TABLE IX
COMPARISONS OF COSINE SIMILARITY ON ×8 SCFACE

details and faithful face structures. As shown in Table IX,
we also provide a quantitative comparison of cosine similarity
using the above methods. This result fully demonstrates our
method’s effectiveness in real scenarios.

E. Model Complexity and Convergence Analysis

In addition to the performance indicators mentioned ear-
lier, the number of model parameters, inference time, and
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Fig. 11. Visual comparisons for ×8 FSR on SCface [41] test set. Our method recovers clearer face images.

TABLE X
COMPARISONS OF MODEL COMPLEXITY ON ×8 CelebA

computational complexity are crucial factors in evaluating
performance. As shown in Table X, we have selected some
models for comparison. Meanwhile, as shown in Fig. 1,
we compare our model with existing ones in terms of param-
eters, PSNR values, and inference speed. We can see that
AMINet can have faster inference time, smaller parameter
count, and computational complexity with similar performance
to SCTANet. In addition, we provide a small parameter
version called “AMINet-S.” AMINet-S performs similarly to
SFMNet in terms of parameter quantity, while AMINet has
more advantages in computational complexity and inference
time. This is thanks to AMINet achieving high efficiency by
promoting extensive multiscale feature exchange within the
network. This design enables features from different receptive
fields to interact effectively, allowing the model to select the
most relevant information for facial reconstruction adaptively.
Therefore, AMINet maintains strong FSR performance while
balancing parameters and computational costs.

We also provide the training loss curve in Fig. 12, which
shows a consistent decrease as iterations progress, indicating
stable optimization and convergence. For clarity, the loss
values are scaled by a factor of 100. We also visualize the
intermediate results at different training stages, illustrating the
clear improvement from early to late iterations as the model

Fig. 12. Model convergence and visualization analysis.

progressively learns more discriminative features. These obser-
vations collectively confirm the effectiveness of the training
strategy and its stable convergence properties.

V. DISCUSSION AND FUTURE WORKS

Although our AMINet performs well in FSR, it still has
certain limitations. The model’s robustness to extreme poses
at very low resolutions, such as side profiles, and its ability
to handle challenging lighting conditions, including low-light
and overexposed environments, require further improvement.
Moreover, while our method significantly reduces com-
putational cost compared to existing methods, it remains
insufficient for deployment on mobile devices.

Future work will focus on enhancing AMINet’s robustness
to extreme poses and challenging lighting conditions while
accelerating inference. This includes integrating pose-invariant
feature learning through attention-based mechanisms
or 3D-aware priors for better side-profile restoration
and developing adaptive illumination correction using
physics-based relighting models or low-light enhancement.
Additionally, optimizing the model with lightweight
architectures, quantization, and efficient inference strategies
will enable faster inference while maintaining high-quality
restoration.
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VI. CONCLUSION

We propose an AMINet for FSR. The core component,
LGFI, facilitates effective interaction between global fea-
tures from SA and local features extracted by the proposed
RDFE module. To enrich local representations, RDFE employs
multiscale depthwise separable convolutions combined with
attention for feature extraction and refinement. Moreover,
an adaptive kernel selection mechanism further promotes mul-
tiscale feature fusion. Extensive experiments on synthetic and
real-world datasets demonstrate that our design substantially
enhances cross-scale feature interaction, enabling our method
to surpass existing approaches in reconstruction quality, model
size, and inference efficiency.
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