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A B S T R A C T

Multi-modal fake news detection (MFND) leverages data from various modalities, including text, image, video,
and audio, to identify the authenticity of news content. Most existing MFND methods focus on extracting
feature representations of each modality and integrating them by fusion strategies. However, they ignore the
problem of modality imbalance where the dominant modality suppresses the performance of other modalities
during optimization process, which leads to insufficient utilization of multi-modal information. To address the
issue of modality imbalance and guarantee the effective utilization of each modality, we propose an approach
called Balanced Multi-modal Learning with Hierarchical Fusion (BMLHF), which contains a Multi-modal
Information Balancing (MIB) module and a Hierarchical Fusion (HF) module. Specifically, we extract multi-
view semantic and pattern features of text and image. MIB calculates the modal information firstly to estimate
the modal difference ratio, and it dynamically allocates corresponding weight for optimization of each view of
modalities, which facilitates the modal information balance state. HF fully explores the diversity and correlation
of multi-modal information in two stages. Intra-modal multi-view information fusion stage designs multi-view
attention sub-network to sufficiently fuse semantic and pattern features within modalities. Inter-modal
correlation fusion stage designs the joint correlation matrix based cross-attention strategy to learn multi-modal
fused features with complementary characteristics. Extensive benchmark experiments demonstrate that our
approach significantly surpasses state-of-the-art MFND methods.
1. Introduction

With the rapid development of information technology, online so-
cial media platforms such as Twitter [1] and Weibo [2] are becoming
increasingly popular [3]. However, this rapid growth also brings about
the inevitable spread of false information and fake news [4], including
multiple modalities such as text, image, video, and audio. The dis-
semination of fake news has detrimental effects and causes significant
negative influence [5]. Therefore, it is imperative to effectively discern
the authenticity of multi-modal information shared on social media,
namely multi-modal fake news detection (MFND) [6].

Currently, the research in the field of fake news detection has made
great progress, which is mainly divided into two types: uni-modal
methods and multi-modal methods. Uni-modal fake news detection
methods can be divided into textual methods and visual methods.
Specifically, current textual methods attempt to capture semantic [7],
emotional [8], position-based [9] and intent-based [10] features from
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the perspective of textual content, as well as features such as com-
ments [11], communication structures [12], and user profiles [13] from
the perspective of social context, which have achieved relatively decent
performance. For example, Hu et al. [14] designed a novel adaptive
rationale guidance network that complements small and large LMs by
selectively acquiring insights from LLM-generated rationales for small
language models. Visual methods often use visual information such as
images and videos. They usually use visual feature extractor to obtain
visual features. For example, Sharif et al. [15] extracted image features
with the pre-trained CNN. Simonyan et al. [16] obtained generic visual
representations using VGG19.

Multi-modal fake news detection methods mainly face the modality
differences among different modalities. Most existing MFND methods
attempt to reduce the discrepancy between modalities to obtain dis-
criminative features by interacting and fusing information between
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Fig. 1. Overall accuracy between uni-modal versions and multi-modal version on Weibo. (a) Text-only EANN, image-only EANN, and EANN. (b) Text-only MRML, image-only
MRML, and MRML. (c) Text-only LogicDM, image-only LogicDM, and LogicDM.
multiple modalities. For example, Wang et al. [17] used event discrim-
inator to extract event-invariant features. Singhal et al. [18] connected
the pre-trained language features with the uni-modal features extracted
from the visual modality. Zhou et al. [19] designed a similarity percep-
tion method to learn multi-modal features. Chen et al. [20] designed
a cross-modal ambiguity learning module to estimate the ambiguity
between different modalities. Peng et al. [21] designed triplet learning
and contrastive pairwise learning to discover and capture the rela-
tionships within and between modalities. Liu et al. [22] proposed
an interpretable multi-modal error information detection model based
on neural symbolic. Ying et al. [23] proposed single-view prediction
and cross-modal consistency learning to distinguish information in
uni-modal and multi-modal features.

1.1. Motivations

Unfortunately, existing methods ignore the fact that the news in-
formation of each modality has a different influence on the detection
task, i.e., the modality imbalance problem [24]. Currently, the methods
solving modality imbalance problem focus on the field of audio-video
classification. Among them, the prevailing practices include uni-modal
assistance [25], gradient blending [26], and sample-level modal eval-
uation [27]. For example, Du et al. [25] strengthened the multi-modal
model with the help of well-trained uni-modal models. Wang et al. [26]
adopted gradient blending to obtain an optimal blending of modalities.
Wei et al. [25] enhanced low-contribution modalities using sample-
level modal evaluation metric. However, these methods only focus on
solving the audio-video classification problem and do not consider the
modality imbalance in MFND. News data has significant differences
from audio-video data in terms of feature differences, modal correla-
tion and fusion strategies, which makes these imbalanced multi-modal
learning methods cannot be directly used in MFND.

To observe the impact of different modalities on the multi-modal
model’s accuracy, we selected three representative multi-modal meth-
ods (EANN [17], MRML [21], LogicDM [22]) and examined the accu-
racy results of their multi-modal and corresponding uni-modal versions.
For text-only versions, EANN, MRML, and LogicDM separately use Text-
CNN, BERT, and BERT. For image-only versions, they separately use
VGG, VGG, and Resnet. Text-only version, image-only version, and
complete version of EANN, MRML, and LogicDM adopt original setting
in [17,21,22] for training with optimal hyperparameters on the Weibo
dataset [2]. For testing samples on Weibo, we obtain corresponding
features based on the trained models with optimal parameters, and
then these features are fed into the classifier used in the original
papers [17,21,22] to obtain the classification results. Fig. 1 shows
the overall accuracy of models between uni-modal versions and the
complete multi-modal version on the Weibo dataset [2]. From the
figure, we can find that the accuracy is much higher for text modality
than image modality for these three models, which means text modality
plays a much more important role than image modality for MFND.

Fig. 2 shows the batch-average uni-modal logit score of EANN,
MRML, and LogicDM, where the logit score is the output of the last fully
connected layer. We use the logit score as modal information in this
2

paper. ‘‘Text-multi’’ and ‘‘Image-multi’’ represent uni-modal logit scores
in multi-modal model, and the ‘‘Image-only’’ represents the logit score
of single-image-modality model. Fig. 2 indicates that in the progress of
training iteration, the logit score of the text modality increases while
the image one tends to flatten out. From Fig. 2, we can find that
the logits of the ‘‘Image-only’’ are significantly higher than those of
‘‘Image-multi’’ during the training process. During multi-modal joint
training, the logits of ‘‘Image-multi’’ are significantly lower than those
of ‘‘Text-multi’’, which proves that the modality with low contribution
is suppressed during the training process.

Moreover, [28] considered that, if the logit of a certain modality is
small, it may indicate that model encounters difficulties in extracting
and utilizing the information from this modality. From finding of [28]
and Figs. 1, 2, we believe that it is the imbalance reflected in the logit
score that leads to the inadequate model optimization that results in
the decline of model accuracy. In other words, the dominant modality
restrains the performance of the other modalities, and the information
of other modalities is not fully utilized, leading to the phenomenon of
modality imbalance.

For multi-modal fake news detection task, there is a lack of methods
specifically aimed at addressing the issue of modality imbalance.

1.2. Contributions

To solve the modality imbalance problem and improve the discrim-
inability of multi-modal fused features, we propose an approach called
Balanced Multi-modal Learning with Hierarchical Fusion (BMLHF),
which includes a Multi-modal Information Balancing (MIB) module and
a Hierarchical Fusion (HF) module. Specifically, MIB utilizes a four-
channel network tailored for both images and text, extracting semantic
and pattern features as multi-view features from two modalities. MIB
dynamically assigns the weight for optimization of each view of modal-
ities to balance modal information. HF designs the multi-view attention
network to fuse semantic and pattern features within modalities, and
then uses the designed joint correlation matrix based cross-attention
strategy to mine complementarity information between modalities.

The main contributions this paper are as follows.
(1) We design a Multi-modal Information Balancing (MIB) mod-

ule, which calculates the modal information firstly, and it obtains
the modal difference ratio and dynamically allocates corresponding
weights to different views of modalities during their optimization pro-
cess, thereby adaptively adjusting the optimization process of each
modality to achieve modal information balance. To the best of our
knowledge, our approach is a relatively early work in investigating the
modality imbalance problem in MFND.

(2) We additionally propose a Hierarchical Fusion (HF) module
to perform cross-modal and cross-view fusion, including a dual cross-
transformer interaction block and two fusion stages, which fully con-
siders the correlation and importance of different modalities. The dual
cross-transformer interaction block facilitates the interaction of infor-
mation from different modalities. Intra-modal multi-view information
fusion stage fuses multi-view features within modalities. Inter-modal
correlation fusion stage excavates complementary information between
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Fig. 2. The batch-average uni-modal logit scores on Weibo. (a) EANN, (b) MRML, (c) LogicDM.
modalities.
(3) Experimental results on Twitter [1], Weibo [2] and Faked-

dit [29] demonstrate that the proposed approach outperforms the
state-of-the-art MFND methods by a large margin.

1.3. Organization

The remaining content of this paper is structured as follows. Intro-
ductions of fake news detection methods and imbalanced multi-modal
learning methods are reviewed in Section 2. Section 3 illustrates the
framework of BMLHF and design of each module in detail. Experiments
and settings are studied in Section 4. Finally, Section 5 concludes our
work and the effectiveness of our model.

2. Related works

The task of fake news detection is a prevalent and critical topic
in real life [30–32]. Due to the development of news data, fake news
detection can be divided into uni-modal fake news detection and multi-
modal fake news detection.

2.1. Uni-modal fake news detection

The purpose of uni-modal fake news detection is to improve the
ability of fake news detection by using textual information or visual
information.

(1) Textual news. Textual news is usually processed as text em-
beddings derived at the word, sentence, and document levels. In this
context, a news article can be represented by latent vectors, which can
either be utilized as input for classifiers directly or used in various
network models [30]. Ma et al. [33] used RNN as the basic model and
captured the relevant information of the event over time by learning its
hidden-layer representations. With the development of graph learning,
Vaibhav et al. [34] modeled each news article as a graph and redefined
the fake news detection task as a graph classification task, where the
nodes represent the sentences of the article and the edges represent the
semantic similarity between pairs of sentences. Giachanou et al. [35]
considered the role of emotional signals and proposed a LSTM model
that incorporates emotional signals obtained from the text of the claims
in order to distinguish between real and fake news.

(2) Visual news. Some early studies utilized the basic statistical
features of images [36,37], such as the number of images, image visi-
bility and image type [38], to help detect fake news. Researchers [39]
extracted advanced image features and combined them with post-based
and user-based features to discover fake news. However, these fea-
tures cannot adequately represent image features at the complex visual
level. Inspired by the capability of CNN, several existing efforts [17,
40] obtained generic visual representations using the pre-trained deep
CNN such as VGG19 [16]. In order to better utilize the intrinsic
features of fake news images and other task-relevant information, Qi
et al. [41] proposed a multi-domain visual neural framework that
3

combines frequency-domain and pixel-domain visual information to
distinguish real news from fake ones by visual features. This method
automatically captures image features in the frequency domain using
a CNN and automatically extracts image semantic features in the pixel
domain using a CNN-RNN architecture.

2.2. Multi-modal fake news detection

The usage of pure textual information and visual information is
effective for fake news detection, and it is feasible to consider them
together [42–44]. Earlier studies [16,17] believed that visual infor-
mation is a compensation for text information, and thus they used
visual extractors to extract visual features and splice them with text
features. Generally, multi-modal models obtain image features from
pre-trained VGG19 [16] first for fake news detection, and then con-
catenate these visual features simply with textual features. However,
it has not fully considered the difference between visual and textual
information. Therefore, some researchers propose that textual and vi-
sual news are related at a high-level semantic level and should not
fuse features in a coarse-grained manner. Qian et al. [45] proposed
the Hierarchical Multi-modal Contextual Attention Network (HMCAN)
architecture to jointly consider the multi-modal context information
and hierarchical semantics of text in a deep, unified framework. Singhal
et al. [18] connected the pre-trained language features with the single
modality features extracted from the visual modality. Zhou et al. [19]
designed a similarity perception method to learn multi-modal features.
Chen et al. [20] designed a cross-modal ambiguity learning module to
estimate the ambiguity between different modalities. Peng et al. [21]
designed triplet learning and contrastive pair learning to discover and
capture the relationships within and between modalities. Liu et al. [22]
proposed an interpretable multi-modal misinformation detection model
based on neural-symbolic. Ying et al. [23] proposed a single-view
prediction and cross-modal consistency learning method to distinguish
information in uni-modal and multi-modal features. Yu et al. [46]
integrated multi-modal features and passed them through a quantum
convolutional neural network (QCNN) to obtain discriminative results.

However, existing methods focus on the differences between the
modalities, but they overlook the modality imbalance issue.

2.3. Imbalanced multi-modal learning

In real life, multi-modal data is imbalanced, and early studies [24]
have shown that the dominant modality will undoubtedly have an
inhibitory effect on other modalities. It is the priority for imbalanced
multi-modal learning methods to weaken this inhibitory effect and
balance the information between modalities. According to recent stud-
ies [26,28], multi-modal models that optimize a uniform learning
objective for all modalities with a joint training strategy will be in-
ferior to uni-modal models in some situations. Such a phenomenon
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Fig. 3. The architecture of our BMLHF model.
contradicts the intention of improving model performance through
integrating information from multiple modalities.

Previous researchers on audio-visual classification [47] claimed that
various modalities tend to converge at different rates, leading to an
uncoordinated convergence problem. To cope with this problem, some
methods aid the training of multi-modal models with the help of addi-
tional uni-modal classifiers or pre-trained model. Du et al. [25] trained
the multi-modal model by distilling knowledge from well-trained uni-
modal models to strengthen the multi-modal model. However, it in-
evitably requires extra effort to train additional neural components.
Some recent researches propose that modality imbalance is caused by
the discrepancy in the model update process between modalities. Wang
et al. [47] first proposed gradient blending to obtain an optimal blend-
ing of modalities based on their over-fitting behaviors. Wu et al. [26]
tackled the problem by adaptively controlling the optimization rate of
each modality. Xu et al. [28] proposed a plug-and-play multi-modal
cosine loss to achieve a more balanced optimization process. Wei
et al. [27] proposed a sample-level modal evaluation metric method
for enhancing low-contribution modalities and reasonably improving
multi-modal cooperation.

To sum up, existing imbalanced multi-modal learning methods are
concentrated on audio-visual classification, and cannot be directly used
for news detection task. For multi-modal fake news detection methods,
the research on imbalanced multi-modal learning has not been well
studied.

3. Proposed approach

We propose an approach called Balanced Multi-modal Learning with
Hierarchical Fusion (BMLHF), which contains a Multi-modal Informa-
tion Balancing (MIB) module to address the issue of modality imbalance
and a Hierarchical Fusion (HF) module to capture discriminative fused
news features. Fig. 3 shows the structure of BMLHF.
4

3.1. Joint semantic and pattern feature extraction module

Given the set of news 𝑂 = {𝑜𝑛}𝑁𝑛=1 includes text and image modal-
ities, and the image modality is represented as 𝐼 = {𝑖𝑛}𝑁𝑛=1, the text
modality is represented as 𝑇 = {𝑡𝑛}𝑁𝑛=1. The one-hot label matrix 𝑌 =
{𝑦𝑛}𝑁𝑛=1 ∈ R𝑀×𝑁 is corresponding to 𝑂, where 𝑀 is the number of cate-
gories of the news. We aim to learn a mapping function: 𝑂 → 𝑌 . To fully
exploit the information within each modality, we extract features from
two perspectives: pattern and semantic features. We use BERT [48] and
Swin-T [49] for text and image to extract pattern features which reveals
the basic fine-grained characteristics of modalities. We use CLIP [50]
for both text and image to extract semantic features which reveal the
cross-modal semantic correspondence of modalities as a complement to
pattern features to extract multi-view features.

BERT is the most popular pre-trained language model based on
transformer in NLP. Swin-T is a vision transformer with hierarchical
architecture which has made sensational progress in tasks like object
detection. CLIP has already given due consideration to cross-modal
correlation during the pre-training process [50], which is appropriate to
take advantage of CLIP to dig deep cross-modal semantic information.
Thus, BMLHF utilizes BERT, Swin-T, CLIP-text and CLIP-image as four
channels for feature extraction.

Specifically, for text modality, we extract the pattern feature 𝑄 =
{𝑞𝑛}𝑁𝑛=1 ∈ R𝑑𝑡×𝑁 via BERT and semantic feature 𝑃 = {𝑝𝑛}𝑁𝑛=1 ∈ R𝑑𝑝×𝑁

with CLIP-text, where 𝑑𝑡, 𝑑𝑝 represent dimensionality of 𝑞𝑛 and 𝑝𝑛.
For image modality, the pattern feature 𝐸 = {𝑒𝑛}𝑁𝑛=1 ∈ R𝑑𝑒×𝑁 and
the semantic feature 𝑈 = {𝑢𝑛}𝑁𝑛=1 ∈ R𝑑𝑝×𝑁 are extracted by Swin-T
and CLIP-image, where 𝑑𝑒, 𝑑𝑝 represent the dimensionality of 𝑒𝑛 and
𝑢𝑛. For each channel, these four types of features are projected to the
same dimension with the two-layer MLP 𝑔𝑢, and we can obtain the
encoded features 𝑄′ = {𝑞′𝑛}𝑁𝑛=1 ∈ R𝑑𝑘×𝑁 , 𝐸′ = {𝑒′𝑛}𝑁𝑛=1 ∈ R𝑑𝑘×𝑁 , 𝑃 ′ =
{𝑝′𝑛}

𝑁
𝑛=1 ∈ R𝑑𝑘×𝑁 and 𝑈 ′ = {𝑢′𝑛}𝑁𝑛=1 ∈ R𝑑𝑘×𝑁 , where 𝑑𝑘 represents the

dimensionality of features. We define 𝑍 =
{

𝑧𝑢𝑛
}𝑁
𝑛=1 ∈

{

𝑄′, 𝐸′, 𝑃 ′, 𝑈 ′},
where 𝑢 ∈ {𝑄, 𝐸 , 𝑃 , 𝑈} represents a set of four types of features,
i.e., four views.
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3.2. Multi-modal information balancing (MIB) module

The problem of modality imbalance is a phenomenon where the
dominant modality suppresses the performance of other modalities
during optimization process. To deal with the problem, we design
the MIB module to dynamically allocate weights to these modalities
during their optimization process, adaptively regulating the model’s
ptimization process to achieve modality balance.

For each channel of 𝑔𝑢, the parameter is 𝜃𝑢, and the process of
radient updating is formulated by:

𝜃𝑢ℎ+1 = 𝜃𝑢ℎ − 𝜆 ̃𝑔𝑢(𝜃𝑢ℎ) (1)

where 𝜃𝑢ℎ is the parameter after the ℎth iteration update.
We adjust the gradient of each modality adaptively by monitoring

the amount of each modality’s information. The logit score encapsulates
the specific information of each modality, as evidenced by the fact
that the logit score directly reflect the activation degree of different
modalities. Therefore, in this paper, we calculate logit score of pat-
tern and semantic views of each modality to investigate the modal
information in more fine-grained details, which can be formulated as
𝑊 𝑢

ℎ 𝑔
𝑢(𝑧𝑢𝑖 (ℎ); 𝜃

𝑢
ℎ) +

𝑏ℎ
4 , where 𝑊 𝑢

ℎ and 𝑏ℎ
4 are the parameters of 𝑔𝑢, and

𝑢
𝑖 (ℎ) represents the 𝑖th feature of 𝐵ℎ, where 𝐵ℎ is a random batch in

the ℎth iteration. We define 𝑠𝑢𝑖 to further quantify the information of
different views of modalities.

𝑠𝑢𝑖 (ℎ) =
𝑀
∑

𝐾=1
1𝐾=𝑦𝑖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(𝑊 𝑢

ℎ 𝑔
𝑢(𝑧𝑢𝑖 (ℎ); 𝜃

𝑢
ℎ) +

𝑏ℎ
4
)𝐾 (2)

where 𝑦𝑖 ∈ {1, 2,… , 𝑀}, 𝑀 is the number of categories.
We design the difference rate 𝜌𝑢ℎ to measure the influence of the

modalities on the optimization process:

𝜌𝑢ℎ =

∑

𝑖∈𝐵ℎ
𝑠𝑢𝑖 (ℎ)

∑

𝑖∈𝐵ℎ
(𝑠𝑄𝑖 (ℎ) + 𝑠𝐸𝑖 (ℎ) + 𝑠𝑃𝑖 (ℎ) + 𝑠𝑈𝑖 (ℎ))

(3)

The lager 𝜌𝑢ℎ is, the greater the amount of information in the corre-
ponding view of modality compared to the other views of modalities,
esulting in modality imbalance.

The modality with larger amount of information plays a dominant
role in the optimization process of the model [26,28], and inhibits the
optimization process of other modalities. Therefore, we design balance
actors 𝑘𝑢ℎ to balance the optimization process of each modality:

𝑘𝑢ℎ =

{

1 − 𝑡𝑎𝑛ℎ(𝛼1𝜌𝑢ℎ) 𝜌𝑢ℎ > 1
4 ,

1 𝑜𝑡ℎ𝑒𝑟𝑠.
(4)

Then we integrate 𝑘𝑢ℎ into Eq. (1). The update process of 𝜃𝑢ℎ is as
follows:

𝜃𝑢ℎ+1 = 𝜃𝑢ℎ − 𝜆𝑘𝑢ℎ𝑔̃
𝑢(𝜃𝑢ℎ) (5)

By using 𝑘𝑢ℎ, we inhibit the optimization of the views with better
performance (𝜌𝑢ℎ > 1

4 ), while the views with poor performance are
ot affected. Through our method, the optimization process of each
odality can be modulated and the problem of modality imbalance can

e effectively alleviated.

3.3. Hierarchical Fusion (HF) module

3.3.1. Dual cross-transformer interaction block
In this section, we design a dual cross-transformer interaction block

to deal with the modality difference issue, facilitating subsequent multi-
modal fusion. In particular, for pattern features 𝑄′ and 𝐸′, we use
𝐶 𝑟𝑜𝑠𝑠−𝑇 𝑟𝑎𝑛𝑠𝑓 𝑜𝑟𝑚𝑒𝑟𝑝𝑎𝑡𝑡𝑒𝑟𝑛 to implement the pattern interaction between
them as follows:

𝑄̃, 𝐸 = 𝐶 𝑟𝑜𝑠𝑠 − 𝑇 𝑟𝑎𝑛𝑠𝑓 𝑜𝑟𝑚𝑒𝑟𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑄′, 𝐸′;𝛩𝐶 ) (6)

Similarly, for semantic features 𝑃 ′ and 𝑈 ′, we have:
5

𝑃 , 𝑈 = 𝐶 𝑟𝑜𝑠𝑠 − 𝑇 𝑟𝑎𝑛𝑠𝑓 𝑜𝑟𝑚𝑒𝑟𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 (𝑃 ′, 𝑈 ′;𝛩𝐷) (7)
where 𝛩𝐶 and 𝛩𝐷 represent the parameters of the cross-modal trans-
formers.

Our designed dual cross-modal transformer interacts information
f different modalities from pattern and semantic aspects, generating
icher and more comprehensive feature representations. This operation
mproves information consistency across modalities.

3.3.2. Two-stage fusion block
Effectively integrating pattern and semantic features can enrich and

enhance the feature representation. Furthermore, multiple modalities
convey different information, and it is necessary to effectively capture
their complementary relationships. Therefore, for each modality, we
design an intra-modal multi-view information fusion stage to fully
exploit diverse information from the semantic and pattern aspects. For
multi-modal fusion, we design an inter-modal correlation fusion stage
to effectively obtain complementary information.

Intra-modal Multi-view Information Fusion Stage. In the first
tage, we use the attention mechanism to obtain the fused features
ithin the modality.

𝛿1 = 𝑓 (𝑄̃;𝛩𝐴), 𝛿2 = 𝑓 (𝑃 ;𝛩𝐴) (8)

𝛽1 = 𝑓 (𝐸;𝛩𝐵), 𝛽2 = 𝑓 (𝑈 ;𝛩𝐵) (9)

where 𝛩𝐴, 𝛩𝐵 are the parameters of the attention networks, 𝛿1, 𝛿2 are
he attention coefficients of 𝑄̃ and 𝑃 , 𝛽1, 𝛽2 are the attention coefficients
f 𝐸 and 𝑈 . The fused features of the corresponding modality can be
btained by:

𝑋𝐼 = 𝛿1𝑄̃ + 𝛿2𝑃 (10)

𝑋𝑇 = 𝛽1𝐸 + 𝛽2𝑈 (11)

where 𝑋𝐼 and 𝑋𝑇 separately represent the output features of image and
text in the intra-modal multi-view information fusion stage.

Inter-modal Correlation Fusion Stage. In the second stage, we aim
o obtain the fused features of different modalities. Due to the diverse
nformation conveyed by multiple modalities, their correlation rela-
ionships need to be explored. Specifically, we design an inter-modal
orrelation fusion stage, and it first stitches the features of image and

text modalities to obtain the joint representation 𝐿 = [𝑋𝐼 ;𝑋𝑇 ] ∈ 𝑅𝑑×𝑁 ,
here 𝑑 = 2𝑑𝑘. The joint correlation matrix 𝐺𝐼 of image modality can
e calculated as follows:

𝐺𝐼 = 𝑡𝑎𝑛ℎ(
𝑋𝐼𝐿T
√

𝑑
) (12)

The correlation matrix 𝐺𝑇 of text modality can be calculated similarly.
𝐺𝐼 and 𝐺𝑇 measure both inter-modal and intra-modal correlation
relationships. The higher the correlation coefficient of paired features
in 𝐺𝐼 and 𝐺𝑇 , the stronger the correlation of them within or between
modalities. Therefore, the joint correlation matrices can characterize
he complementary relationships of features in different modalities. We

further learn the attention weight matrices 𝑊𝐼 , 𝑊𝑇 to calculate the
oint correlation features 𝑋′

𝐼 , 𝑋′
𝑇 :

𝑋′
𝐼 = 𝑅𝑒𝐿𝑢(𝑋𝐼 +𝑊𝐼𝐺𝐼 ) (13)

𝑋′
𝑇 = 𝑅𝑒𝐿𝑢(𝑋𝑇 +𝑊𝑇𝐺𝑇 ) (14)

where 𝑋′
𝐼 and 𝑋′

𝑇 are further spliced to obtain final feature represen-
tation:

𝑋 = {𝑥𝑛}𝑁𝑛=1 = [𝑋′
𝐼 ;𝑋

′
𝑇 ] (15)

By using the hierarchical fusion module, semantic and pattern infor-
ation is effectively integrated, enriching the feature representation of

each modality. Moreover, the complementary information between dif-
ferent modalities is fully exploited, such that discriminative information
of multiple modalities is fully utilized for detection task.
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Algorithm 1 Balanced Multi-modal Learning with Hierarchical Fusion
Input data: Training set 𝑂, with text modality 𝑇 and image modality
𝐼 , label matrix 𝑌 . Testing set 𝑂′, with text modality 𝑇 ′ and image
modality 𝐼 ′.
for (𝑖 = 1, ..., 𝛶 ) do
1. Calculate the modal information 𝑠𝑢𝑖 (ℎ) by Eq. (2), 𝑢 ∈ {𝑄, 𝐸 , 𝑃 , 𝑈};
2. Calculate the difference rate 𝜌𝑢ℎ by Eq. (3);
3. Calculate the balance factors 𝑘𝑢ℎ by ;
4. Obtain final feature representation 𝑋 by Eq. (15);
5. Calculate 𝐿𝑐 , 𝐿𝑠, 𝐿𝑡𝑜𝑡𝑎𝑙 by Eqs. (17), (18), and (19);
6. Updating 𝜃𝑢ℎ, 𝛩𝐴, 𝛩𝐵 , 𝛩𝐶 , 𝛩𝐷, 𝜃𝑐 ;
Output: Class label 𝑌 ′ of 𝑂′.

3.4. Fake news classifier

After obtaining the fused features of the image and text, we feed
hem into a classifier which contains a one-layer of MLP and 𝑅𝑒𝐿𝑢

activation function to obtain the predicted label 𝑦̂𝑛:

𝑦𝑛 = 𝐶(𝑥𝑛; 𝜃𝑐 ) (16)

where 𝐶(𝑥𝑛; 𝜃𝑐 ) is a classifier, 𝜃𝑐 is the parameter of the classifier.

3.5. Total loss

In order to enhance the classification ability of the model, we
minimize the cross-entropy loss 𝐿𝑐 .

𝐿𝑐 = 𝑦𝑛𝑙 𝑜𝑔(𝑦̂𝑛) + (1 − 𝑦𝑛)𝑙 𝑜𝑔(1 − 𝑦̂𝑛) (17)

In order to enhance the discriminative ability of feature 𝑋, we
employ a cross-modal supervised contrastive loss 𝐿𝑠. 𝑃 (𝑛) is an index
set of the same category as 𝑥𝑛 in 𝑋, 𝐴(𝑛) is an index set of different
categories from 𝑥𝑛 in 𝑋, we can define 𝐿𝑠:

𝐿𝑠 =
𝑁
∑

𝑛=1

−1
|𝑃 (𝑛)|

∑

𝑝∈𝑃 (𝑛)
𝑙 𝑜𝑔 𝑒𝑥𝑝(𝑥𝑛𝑥𝑝∕𝜏)

∑

𝑎∈𝐴(𝑛) 𝑒𝑥𝑝(𝑥𝑛𝑥𝑝∕𝜏)
(18)

|𝑃 (𝑛)| is the cardinality of 𝑃 (𝑛), 𝜏 is a scalar parameter that is empiri-
cally set as 𝜏 = 0.5. Thus, the total loss can be formulated as:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑐 + 𝛼2𝐿𝑠 (19)

where 𝛼2 is a balance factor.
We use the Adam optimizer to pursue the optimal network parame-

ters under the total loss. For the test sample set 𝑂′, we use the optimal
parameters 𝛩𝐴, 𝛩𝐵 , 𝛩𝐶 , 𝛩𝐷, 𝜃𝑐 , 𝜃𝑢ℎ to obtain the corresponding features
̃, and then we input these features into the classifier to obtain the label
̂ ′. The overall model optimization process of BMLHF is summarized as
lgorithm 1.

4. Experiments

4.1. Datasets

We exploit three widely used datasets for fake news detection,
i.e., Twitter [1], Weibo [2], and Fakeddit [29]. The details of these
three datasets are as follows:

Weibo Dataset [2] is collected by Jin and is applied to the detection
f multi-modal fake news. Fake news comes from the official rumor
efutation platform, which is constructed through crowd-sourcing or
fficial rumor refutation. We divide the dataset into a training set and
 testing set with a ratio of 8:2, where the training set contains 7532

news items and the testing set contains 1996 news items.
Twitter Dataset [1] comes from the MediaEval Verifying Multime-

ia Use benchmark, which has also been applied to multi-modal fake
ews detection. We divide the dataset into a training set and a testing
et, where the training set contains 8617 news items and the testing set
6

contains 2059 news items.
Fakeddit Dataset [29] is a multi-modal benchmark dataset created

by the research team at the University of California. It contains over one
million samples of false and true information. These samples are clas-
sified into six categories, including true content, misleading content,
etc. It encompasses multi-modal information such as text and image
data. Following [51], we select 30,000 image–text pairs for training
and 10,000 image–text pairs for testing.

4.2. Experimental setting

For textual representation, the embeddings of each token are ob-
ained by pre-trained BERT-base model, and the embedding dimension
s set to 768. For visual representation, we set the dimension size as

1000. In the joint semantic and pattern feature extraction module, the
imension of the hidden layer of MLP is 384, and the 𝑅𝑒𝐿𝑢 activation
unction is used for MLP. The maximum training epoch number is set to

100. The learning rate is fixed to 0.001 for three datasets. We use Adam
optimizer to train our model with a weight decay of 0.001. The number
of heads of cross-transformer block is set to 4. We employ a grid search
method to fine-tune the hyperparameters. We set 𝜏, 𝛼1, 𝛼2 to 0.5, 0.8,
0.5 in the search range [0,1], which generate the best results.

4.3. Experimental results

4.3.1. Baselines
To evaluate the validity of BMLHF and to get a fair comparison, we

elect two types of competing baselines on datasets Twitter and Weibo,
ncluding uni-modal methods and multi-modal methods.

(1) Uni-modal baselines:

∙ BERT [48] is a popular pre-trained model for text. In experiment,
we use BERT to extract textual features, followed by a classifier
for fake news detection.

∙ Swin-T [49] is also an effective model to extract visual features.
In experiment, we reserve only Swin-T to extract image features,
followed by a classifier for fake news detection.

(2) Multi-modal baselines:

∙ EANN [17] uses event discriminator to extract event-invariant
features.

∙ SpotFake+ [18] uses BERT and VGG to extract features from text
and image, and then connects the corresponding features.

∙ SAFE [19] designs a similarity perception method to learn multi-
modal features for fake news detection.

∙ CAFE [20] designs a cross-modal ambiguity learning module
to estimate the ambiguity between different modalities, which
endeavors to quantify the ambiguity between text and image for
detection.

∙ MRML [21] designs triplet learning and contrastive pairwise
learning to discover and capture the relationships within and
between modalities.

∙ LogicDM [22] designs an interpretable multi-modal misinforma-
tion detection model based on neural symbolic AI.

∙ BMR [23] designs single-view prediction and cross-modal con-
sistency learning to distinguish information in uni-modal and
multi-modal features.

∙ QMFND [46] integrates multi-modal features and passes them
through a quantum convolutional neural network (QCNN) to
obtain discriminative results.

∙ MTTV [52] makes multi-modal data interact fully and capture the
semantic relationships between them, and it proposes a scalable
classifier to improve the classification balance of fine-grained fake
news detection with the problem of class imbalance.
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Table 1
Performance comparison between BMLHF and state-of-the-art methods on Weibo, Twitter, and Fakeddit datasets.
Dataset Method Acc Fake news Real news

Pre Rec F1 Pre Rec F1

BERT 0.804 ± 0.022 0.800 ± 0.021 0.860 ± 0.012 0.830 ± 0.021 0.840 ± 0.012 0.760 ± 0.011 0.800 ± 0.030
Swin-T 0.643 ± 0.014 0.640 ± 0.020 0.600 ± 0.018 0.620 ± 0.025 0.640 ± 0.014 0.700 ± 0.029 0.660 ± 0.010

EANN 0.782 ± 0.020 0.827 ± 0.017 0.697 ± 0.034 0.756 ± 0.027 0.753 ± 0.018 0.863 ± 0.010 0.804 ± 0.006

Weibo

SpotFake+ 0.870 ± 0.033 0.855 ± 0.032 0.892 ± 0.033 0.873 ± 0.032 0.769 ± 0.033 0.807 ± 0.032 0.787 ± 0.033
SAFE 0.839 ± 0.015 0.840 ± 0.025 0.820 ± 0.015 0.830 ± 0.010 0.850 ± 0.015 0.830 ± 0.025 0.840 ± 0.010
CAFE 0.840 ± 0.023 0.825 ± 0.036 0.851 ± 0.015 0.837 ± 0.026 0.855 ± 0.017 0.830 ± 0.024 0.842 ± 0.018
MRML 0.897 ± 0.012 0.896 ± 0.012 0.905 ± 0.012 0.901 ± 0.010 0.898 ± 0.012 0.887 ± 0.010 0.892 ± 0.011
LogicDM 0.852 ± 0.010 0.843 ± 0.015 0.859 ± 0.020 0.851 ± 0.015 0.862 ± 0.010 0.845 ± 0.012 0.853 ± 0.007
BMR 0.831 ± 0.007 0.831 ± 0.024 0.824 ± 0.023 0.827 ± 0.022 0.831 ± 0.022 0.838 ± 0.023 0.834 ± 0.024
QMFND 0.869 ± 0.016 0.900 ± 0.010 0.810 ± 0.015 0.850 ± 0.011 0.840 ± 0.011 0.920 ± 0.012 0.880 ± 0.011
MTTV 0.876 ± 0.018 0.865 ± 0.018 0.897 ± 0.012 0.875 ± 0.012 0.890 ± 0.015 0.861 ± 0.018 0.875 ± 0.018
BMLHF 0.912 ± 0.009 0.930 ± 0.012 0.880 ± 0.010 0.903 ± 0.013 0.894 ± 0.010 0.920 ± 0.009 0.902 ± 0.012

BERT 0.642 ± 0.012 0.602 ± 0.019 0.474 ± 0.009 0.526 ± 0.012 0.666 ± 0.008 0.766 ± 0.021 0.711 ± 0.012
Swin-T 0.760 ± 0.015 0.720 ± 0.023 0.785 ± 0.029 0.740 ± 0.023 0.800 ± 0.021 0.753 ± 0.021 0.787 ± 0.022

EANN 0.648 ± 0.016 0.810 ± 0.025 0.498 ± 0.040 0.617 ± 0.023 0.584 ± 0.016 0.759 ± 0.011 0.660 ± 0.027

Twitter

SpotFake+ 0.790 ± 0.013 0.786 ± 0.014 0.747 ± 0.013 0.766 ± 0.014 0.793 ± 0.016 0.827 ± 0.011 0.810 ± 0.014
SAFE 0.766 ± 0.036 0.752 ± 0.029 0.731 ± 0.020 0.742 ± 0.026 0.777 ± 0.029 0.795 ± 0.029 0.786 ± 0.026
CAFE 0.806 ± 0.012 0.805 ± 0.011 0.813 ± 0.012 0.809 ± 0.011 0.807 ± 0.014 0.799 ± 0.014 0.803 ± 0.011
MRML 0.803 ± 0.025 0.777 ± 0.025 0.747 ± 0.035 0.762 ± 0.030 0.821 ± 0.025 0.844 ± 0.030 0.832 ± 0.035
LogicDM 0.911 ± 0.008 0.913 ± 0.016 0.958 ± 0.012 0.935 ± 0.010 0.909 ± 0.012 0.816 ± 0.025 0.859 ± 0.009
BMR 0.872 ± 0.018 0.885 ± 0.014 0.931 ± 0.016 0.907 ± 0.016 0.842 ± 0.013 0.751 ± 0.012 0.794 ± 0.020
QMFND 0.918 ± 0.015 0.880 ± 0.012 0.970 ± 0.008 0.920 ± 0.010 0.970 ± 0.015 0.870 ± 0.012 0.910 ± 0.008
MTTV 0.885 ± 0.011 0.872 ± 0.023 0.912 ± 0.016 0.886 ± 0.008 0.910 ± 0.010 0.876 ± 0.016 0.886 ± 0.008
BMLHF 0.966 ± 0.013 0.985 ± 0.012 0.933 ± 0.010 0.957 ± 0.010 0.948 ± 0.010 0.975 ± 0.012 0.956 ± 0.010

BERT 0.878 ± 0.010 0.853 ± 0.011 0.902 ± 0.013 0.878 ± 0.012 0.903 ± 0.010 0.861 ± 0.011 0.898 ± 0.012
Swin-T 0.633 ± 0.023 0.503 ± 0.022 0.788 ± 0.012 0.663 ± 0.010 0.802 ± 0.023 0.651 ± 0.012 0.727 ± 0.012

EANN 0.724 ± 0.020 0.727 ± 0.033 0.719 ± 0.014 0.723 ± 0.015 0.722 ± 0.014 0.729 ± 0.034 0.726 ± 0.017

Fakeddit

SpotFake+ 0.819 ± 0.017 0.801 ± 0.018 0.848 ± 0.029 0.824 ± 0.020 0.839 ± 0.012 0.790 ± 0.021 0.813 ± 0.018
SAFE 0.846 ± 0.011 0.809 ± 0.023 0.857 ± 0.010 0.832 ± 0.013 0.879 ± 0.014 0.837 ± 0.022 0.858 ± 0.012
CAFE 0.912 ± 0.023 0.946 ± 0.019 0.886 ± 0.034 0.916 ± 0.023 0.878 ± 0.016 0.942 ± 0.018 0.909 ± 0.010
MRML 0.840 ± 0.035 0.819 ± 0.026 0.874 ± 0.027 0.846 ± 0.022 0.865 ± 0.026 0.807 ± 0.027 0.835 ± 0.022
LogicDM 0.873 ± 0.033 0.862 ± 0.028 0.850 ± 0.030 0.856 ± 0.034 0.874 ± 0.030 0.850 ± 0.030 0.862 ± 0.034
BMR 0.901 ± 0.008 0.890 ± 0.014 0.910 ± 0.017 0.891 ± 0.018 0.910 ± 0.012 0.890 ± 0.018 0.891 ± 0.021
QMFND 0.942 ± 0.011 0.930 ± 0.024 0.950 ± 0.027 0.940 ± 0.022 0.950 ± 0.023 0.930 ± 0.013 0.940 ± 0.022
MTTV 0.918 ± 0.018 0.893 ± 0.010 0.934 ± 0.023 0.932 ± 0.018 0.936 ± 0.023 0.926 ± 0.013 0.934 ± 0.023
BMLHF 0.950 ± 0.012 0.945 ± 0.016 0.955 ± 0.010 0.950 ± 0.017 0.955 ± 0.017 0.945 ± 0.020 0.950 ± 0.018
a

s

p
i

4.3.2. Overall performance
Table 1 shows the fake news detection results on four measure-

ments, including Accuracy, Precision, Recall and F1 scores, respec-
tively. We obtain the following observations:

Specifically, our approach achieves an accuracy improvement of
0.015 (=0.912−0.897) on Weibo, 0.048 (=0.966−0.918) on Twitter,
and 0.008 (=0.950−0.942) on Fakeddit. For F1 of fake news, BMLHF
achieves an improvement of 0.002 (=0.903−0.901) on Weibo, 0.022
(=0.957−0.935) on the Twitter dataset, and 0.010 (=0.950−0.940)
on Fakeddit. For F1 of real news, BMLHF achieves an improvement
of 0.010 (=0.902−0.892) on Weibo, 0.046 (=0.956−0.910) on Twit-
ter, and 0.010 (=0.950−0.940) on Fakeddit. From the table, some
compared methods can obtain slightly better results on specific met-
rics. However, they have relatively weaker results on the other met-
rics, including the comprehensive metrics than BMLHF. These results
demonstrate that BMLHF effectively considers and alleviates the issue
of modality imbalance. Furthermore, BMLHF learns multi-modal fea-
ture representations with stronger discriminability and better captures
multi-view information within and between modalities.

Figs. 4, 5, and 6 show the T-SNE diagrams of sample distribution
on Weibo, Twitter, and Fakeddit respectively. For original samples,
we simply concatenate the original features of the text and image.
n Figs. 4(a), 5(a), and 6(a) we can see that real and fake news mix
ogether, whereas in Figs. 4(b), 5(b), and 6(b) we can find that real

and fake news exhibit relatively good separability, with few samples
are not completely separated. This demonstrates the effectiveness of

MLHF for multi-modal fake news classification.
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4.4. Discussions

4.4.1. Evaluation of key modules
In order to evaluate the influence of key modules of BMLHF, we

conduct ablation experiments. Table 2 shows the results of ablation
experiments. We remove MIB, which we call BMLHF-I. We remove the
two-stage fusion block of HF, which refers to BMLHF-T, and we directly
concatenate the text and image features after the dual cross-transformer
interaction block. We remove the dual cross-transformer block of HF
and call it BMLHF-D, and multi-view features are fed into the two-stage
fusion block without interaction. We remove the whole HF including
the dual cross-transformer block and the two-stage fusion block, which
we call BMLHF-H. For BMLHF-H, we directly concatenate the text
nd image features. We directly concatenate the intra-modal features

without using our first fusion stage of HF, which we call BMLHF-tra,
and we directly concatenate the inter-modal features without using our
econd fusion stage of HF, which we call BMLHF-ter.

For BMLHF-I, there is a significant performance reduction com-
ared to complete model, with a decrease of 0.038 (=0.912−0.874)
n accuracy on Weibo and 0.040 (=0.966−0.926) on Twitter. This

highlights the advantage of MIB in balancing multi-modal informa-
tion. For BMLHF-T, the accuracy declines by 0.022 (=0.912−0.890)
on Weibo and 0.024 (=0.966−0.942) on Twitter, demonstrating the
positive effect of the two-stage fusion strategy of HF in effectively
integrating multi-view features and exploring cross-modal correlation
within and between modalities. For BMLHF-D, there is a drop of 0.039
(=0.912−0.873) and 0.041 (=0.966−0.925) in accuracy on Weibo
and Twitter, respectively, indicating the importance of the dual cross-
transformer block of HF in facilitating interaction between modalities.
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Fig. 4. T-SNE of sample distribution on Weibo, where (a) shows the distribution of original samples, and (b) shows the distribution of learned features.
Fig. 5. T-SNE of sample distribution on Twitter, where (a) shows the distribution of original samples, and (b) shows the distribution of learned features.
Fig. 6. T-SNE of sample distribution on Fakeddit, where (a) shows the distribution of original samples, and (b) shows the distribution of learned features.
For BMLHF-H, there is a significant performance reduction compared
to complete model, with a decrease of 0.044 (=0.912−0.868) in ac-
curacy on the Weibo, 0.056 (=0.966−0.910) on the Twitter, and
0.030 (0.950−0.920) on the Fakeddit. This highlights the advantage
of HF in effectively interacting and integrating features. For BMLHF-
tra, the accuracy declines by 0.010 (=0.912−0.902) on Weibo, 0.033
(=0.966−0.933) on Twitter, and 0.015 (=0.950−0.935) on Faked-
dit. This highlights the advantage of the first fusion stage of HF
in sufficiently fusing semantic and pattern features within modali-
ties. For BMLHF-ter, there is a drop of 0.019 (=0.912−0.893), 0.036
(=0.966−0.930), 0.014 (0.950−0.936) in accuracy on Weibo, Twit-
ter and Fakeddit respectively. This highlights the advantage of the
second fusion stage of HF in effectively obtaining fused features be-
tween modalities. Overall, the results shown in Table 2 illustrate the
effectiveness of each module of BMLHF.

4.4.2. Evaluation of imbalanced multi-modal learning
To further verify the validity of MIB, we experimentally observe the

variation of modal information on three datasets. According to Eq. (2),
𝑠𝑢𝑖 quantifies the information of different modalities, and we regard
𝑠 represents the average information amount of a batch of samples.
8

We observe the value of 𝑠 to reflect whether MIB can help balance
the information of multiple modalities. Fig. 7 shows the experimental
results on three datasets.

We can observe that the text modality contains more information
than the image modality on Weibo, Twitter and Fakeddit. Moreover,
as the training progresses, the difference in information between the
modalities is decreased. Results on the Weibo, Twitter and Fakeddit
datasets indicate that the difference of information of text and image
is effectively decreased during the training process, demonstrating the
effectiveness of the MIB module in alleviating the issue of modality
imbalance.

Furthermore, we apply our designed MIB module to these methods
mentioned in Section 1.1 for helping balance information of different
modalities. Specifically, we have set up dimensionality reduction net-
works after each feature extractor. MIB will monitor modal information
and assign corresponding gradient update weights of each modality.
The experimental results are shown in Fig. 8. From Fig. 8, we can find
that the results of the complete multi-modal version with MIB show
a significant improvement on accuracy as compared with the original
multi-modal version for these three methods, which fully verifies MIB
can effectively alleviate modality imbalance problem and improve the
performance of model.
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Table 2
Ablation studies of BMLHF on Weibo, Twitter, and Fakeddit datasets.
Dataset Method Acc Fake news Real news

Pre Rec F1 Pre Rec F1

Weibo

BMLHF-I 0.874 0.930 0.830 0.870 0.830 0.930 0.870
BMLHF-T 0.890 0.900 0.885 0.890 0.885 0.900 0.890
BMLHF-D 0.873 0.890 0.860 0.880 0.850 0.880 0.870
BMLHF-H 0.868 0.880 0.855 0.866 0.853 0.880 0.866
BMLHF-tra 0.902 0.890 0.900 0.895 0.860 0.880 0.875
BMLHF-ter 0.893 0.870 0.900 0.885 0.900 0.870 0.885

BMLHF 0.912 0.930 0.880 0.903 0.894 0.920 0.902

Twitter

BMLHF-I 0.926 0.986 0.880 0.922 0.880 0.986 0.922
BMLHF-T 0.942 0.950 0.935 0.945 0.935 0.950 0.945
BMLHF-D 0.925 0.943 0.912 0.933 0.901 0.933 0.922
BMLHF-H 0.910 0.899 0.910 0.903 0.920 0.899 0.910
BMLHF-tra 0.933 0.915 0.913 0.914 0.935 0.915 0.920
BMLHF-ter 0.930 0.920 0.930 0.925 0.930 0.920 0.925

BMLHF 0.966 0.985 0.933 0.957 0.948 0.975 0.956

Fakeddit

BMLHF-I 0.905 0.880 0.940 0.910 0.940 0.880 0.915
BMLHF-T 0.923 0.895 0.945 0.930 0.940 0.900 0.925
BMLHF-D 0.937 0.920 0.950 0.940 0.950 0.920 0.940
BMLHF-H 0.920 0.890 0.945 0.925 0.945 0.890 0.925
BMLHF-tra 0.935 0.940 0.930 0.935 0.930 0.940 0.935
BMLHF-ter 0.936 0.935 0.925 0.930 0.925 0.935 0.930

BMLHF 0.950 0.945 0.955 0.950 0.955 0.945 0.950
Fig. 7. The variation curve of information of modalities on (a) Weibo, (b) Twitter, (c) Fakeddit.
Fig. 8. Overall accuracy between uni-modal versions, multi-modal version, and MIB-based version on Weibo. (a) Text-only EANN, image-only EANN, EANN, and EANN with MIB.
(b) Text-only MRML, image-only MRML, MRML, MRML with MIB. (c) Text-only LogicDM, image-only LogicDM, LogicDM, LogicDM with MIB.
4.4.3. Hyperparameters analysis
We discuss the sensitivity of our approach to different values of

hyperparameters 𝜏, 𝛼1 and 𝛼2 on Weibo, Twitter, and Fakeddit. Figs. 9,
10 and 11 show the experimental results of evaluation of 𝜏, 𝛼1 and 𝛼2.
From the figures, for 𝜏, BMLHF performs better in the range [0.3,0.5]
on Weibo, 0.5 on Twitter and Fakeddit. For 𝛼1, BMLHF performs better
in the range [0.7,0.9] on Weibo and at 0.8 on Twitter and Fakeddit.
For 𝛼2, BMLHF performs better in the range [0.4,0.6] on Weibo and at
0.5 on Twitter and Fakeddit. Therefore, we set 𝜏=0.5, 𝛼1=0.8, 𝛼2=0.5
for three datasets.

Furthermore, we have fixed the optimal hyperparameters to observe
the variation of performance during different epochs. Specifically, we
adopt the optimal hyperparameters 𝜏 = 0.5, 𝛼 = 0.8, 𝛼 = 0.5 on Weibo,
9

1 2
Twitter and Fakeddit. Fig. 12 shows the results. We can find that with
the fixed optimal hyperparameters, BMLHF tends to achieve the best
result at about 70 epochs on three datasets. Then BMLHF can obtain
stable performance with increasing epochs.

4.4.4. Statistical analysis
To statistically analyze the difference between our approach and

compared methods, we conduct the Kruskal Wallis test [53] at sig-
nificance level of 0.05 to perform statistical significance test between
BMLHF and other methods, Table 3 shows the 𝑃 -value at significance
level of 0.05 between BMLHF and other methods. When 𝑃 -value is
lower than 0.05, we can consider that BMLHF has a significant differ-
ence against the corresponding comparison methods. From Table 3, we
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Fig. 9. The performances of BMLHF with different values of 𝜏 on (a) Weibo, (b) Twitter, (c) Fakeddit.
Fig. 10. The performances of BMLHF with different values of 𝛼1 on (a) Weibo, (b) Twitter, (c) Fakeddit.
Fig. 11. The performances of BMLHF with different values of 𝛼2 on (a) Weibo, (b) Twitter, (c) Fakeddit.
Fig. 12. The performances of BMLHF with fixed hyperparameters on (a) Weibo, (b) Twitter, (c) Fakeddit.
can find the P-values are significantly lower than 0.05. This demon-
strates BMLHF indeed has a significant difference from the comparison
methods.

4.4.5. Computational cost analysis
In order to investigate computational cost of training and testing

phases, we calculate the training time (for each epoch) and testing time
(on the total test set) on Weibo, Twitter and Fakeddit. In addition, we
also calculate the number of parameters of our approach. The detailed
computational cost and number of parameters of our approach and
compared methods that can achieve favorable results, i.e., MRML and
LogicDM, are reported in Table 4. From the table, training time, testing
10
time, and number of parameters of BMLHF is comparable to MRML
and LogicDM. Overall, the computational cost of BMLHF is mainly
from the cross-modal transformer part. This comparison indicates that
our approach does not need extra large amount of cost, and it is
computationally efficient.

5. Conclusion

In this paper, we propose an approach called Balanced Multi-modal
Learning with Hierarchical Fusion (BMLHF) for MFND. Specifically,
we design a Multi-modal Information Balancing (MIB) module, which
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Table 3
P-values between BMLHF and other compared methods on three datasets.
Dataset BMLHF

BERT Swin-T EANN SpotFake+ SAFE CAFE

Weibo 2.355 × 𝑒−5 1.833 × 𝑒−10 9.888 × 𝑒−5 3.000 × 𝑒−3 5.111 × 𝑒−7 1.351 × 𝑒−6

Twitter 1.941 × 𝑒−6 2.563 × 𝑒−9 6.149 × 𝑒−6 6.332 × 𝑒−9 5.625 × 𝑒−10 2.878 × 𝑒−11

Fakeddit 1.377 × 𝑒−6 1.612 × 𝑒−5 1.537 × 𝑒−6 1.102 × 𝑒−9 4.109 × 𝑒−8 2.000 × 𝑒−3

MRML LogicDM BMR QMFND MTTV

Weibo 9.226 × 𝑒−6 4.187 × 𝑒−6 7.505 × 𝑒−8 2.600 × 𝑒−2 4.000 × 𝑒−3

Twitter 2.052 × 𝑒−7 8.000 × 𝑒−3 1.000 × 𝑒−3 2.800 × 𝑒−2 3.692 × 𝑒−6

Fakeddit 4.778 × 𝑒−8 4.366 × 𝑒−11 1.158 × 𝑒−8 1.500 × 𝑒−2 1.000 × 𝑒−3
Table 4
Computational cost of the training and testing phases of BMLHF on three datasets.
Dataset Training time (s) Testing time (s) Parameters (M)

Weibo Twitter Fakeddit Weibo Twitter Fakeddit

MRML 37.28 40.23 56.00 24.50 21.98 35.57 13.55
LogicDM 53.80 51.25 85.38 42.44 39.30 56.20 18.05
BMLHF 41.66 38.40 63.50 25.06 22.50 34.70 14.85
accelerates balance among diverse modal information during the op-
imization process, with corresponding weights assigned to different
odalities to inhibit the optimization of the dominate modality. We
esign a Hierarchical Fusion (HF) module from the within-modality and
etween-modality fusion perspectives, which effectively leverages the
ulti-view information and fully explores the correlation within and

etween modalities.
Comprehensive experiments on two widely used datasets demon-

strate the validity of BMLHF. Our model improves the accuracy of
ake news detection and outperforms state-of-the-art MFND methods.
he ablation studies show the superiority of MIB in alleviating modal-

ty imbalance and HF in better fusing multi-view and inter-modal
omplementary information.

Currently, our approach mainly focuses on image and text modal-
ities. In future, BMLHF will be further evaluated on more real-world
experimental data with diverse modalities, e.g., video, to demonstrate
ts generalization, which helps determine the reliability of the model in
ore complex practical application scenarios.
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