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Abstract

Recent RGB-guided depth super-resolution methods have
achieved impressive performance under the assumption of
fixed and known degradation (e.g., bicubic downsampling).
However, in real-world scenarios, captured depth data often
suffer from unconventional and unknown degradation due
to sensor limitations and complex imaging environments
(e.g., low reflective surfaces, varying illumination). Con-
sequently, the performance of these methods significantly
declines when real-world degradation deviate from their as-
sumptions. In this paper, we propose the Degradation Ori-
ented and Regularized Network (DORNet), a novel frame-
work designed to adaptively address unknown degradation
in real-world scenes through implicit degradation represen-
tations. Our approach begins with the development of a
self-supervised degradation learning strategy, which mod-
els the degradation representations of low-resolution depth
data using routing selection-based degradation regulariza-
tion. To facilitate effective RGB-D fusion, we further intro-
duce a degradation-oriented feature transformation module
that selectively propagates RGB content into the depth data
based on the learned degradation priors. Extensive exper-
imental results on both real and synthetic datasets demon-
strate the superiority of our DORNet in handling unknown
degradation, outperforming existing methods.

1. Introduction

Blind depth super-resolution (DSR) aims to recover precise
high-resolution (HR) depth from low-resolution (LR) depth
with unknown degradation, which has been widely applied
in many fields, such as virtual reality [17, 33, 35, 44],
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Figure 1. Previous methods (a) directly fuse the RGB information
aligned with the LR depth, while our method (b) focuses more on
modeling the degradation representation of the LR depth to pro-
vide targeted guidance for HR depth recovery.

augmented reality [6, 31, 41, 43, 48], and 3D reconstruc-
tion [3, 4, 34, 46, 49]. As shown in Fig. 1(a), recent RGB-
guided DSR methods [2, 26, 45, 52, 58] have been proposed
that integrate RGB features aligned with input depth based
on the assumption of known and fixed degradation, achiev-
ing excellent performance on synthetic data.

However, due to limitations in sensor technology and
imaging environments, depth data captured from real-world
scenes often suffer from unconventional and unknown
degradation [47] (e.g., structural distortion and blur). Such
real-world degradation results in structure inconsistency be-
tween depth and RGB, impairing the performance of pre-
vious methods. Moreover, real-world degradation labels
are unavailable, preventing us from explicitly estimating the
degradation between LR depth and HR depth.

As illustrated in Fig. 2(b) and Fig. 2(c), the LR depth
synthesized using bicubic downsampling exhibits accurate
depth structures, while the real-world LR depth experiences
more severe structural distortion. Furthermore, Fig. 2(i)
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Figure 2. Visual results of LR depth, HR depth, and degradation representation. (b) and (c) are the synthetic and the real-world LR
depth, respectively. (d) is the learned degradation representation D̃. (e)-(g) are the HR depth predicted by FDSR [9], DCTNet [56], and
SGNet [37], while (h) is produced by our DORNet. (i) is the histogram of real-world LR, synthetic LR, and ground-truth (GT) depth.

indicates that the distribution of the real-world LR depth
shows a greater difference from the ground-truth depth
compared to the synthetic LR depth. This makes it more
challenging for DSR to restore accurate HR depth from LR
depth with unknown degradation.

To address these issues, as shown in Fig. 1(b), we pro-
pose a degradation oriented and regularized network (DOR-
Net). The DORNet utilizes degradation representations to
guide the restoration of HR depth from real-world scenar-
ios with unknown degradation. To this end, we present a
self-supervised degradation learning strategy to estimate the
implicit degradation representations between LR and HR
depth. In this strategy, a router mechanism is first intro-
duced to dynamically control the generation of degradation
kernels with varying scales. We then design degradation
regularization that leverages these kernels to deteriorate the
predicted HR depth, yielding a new degraded depth. Conse-
quently, the entire degradation process is learned by narrow-
ing the distance between the new degraded depth and the
LR depth, without using degradation labels. Furthermore,
we observe that RGB can provide sharp and complete de-
tails for the degradation areas of the LR depth. Therefore,
we propose utilizing the estimated degradation to adaptively
select RGB features to guide and facilitate the RGB-D fu-
sion. Concretely, we develop a degradation-oriented fusion
scheme, deploying a degradation-oriented feature transfor-
mation module (DOFT). The DOFT produces filter kernels
from learned degradation and then filters the RGB features,
offering complementary contents for the depth features.

Owing to these designs, Fig. 2(d) demonstrates that the
real-world degradation learned by DORNet accurately char-
acterizes the degradation areas of the LR depth, thereby pro-
viding precise guidance for RGB-D fusion. Moreover, com-
pared to previous approaches [9, 37, 56], Fig. 2(h) reveals
that our method can effectively restore HR depth with more
accurate and clearer structures.

In short, our contributions are as follows:
• We introduce a novel DSR framework termed DORNet,

which utilizes degradation representations to adaptively
address unknown degradation in real-world scenes.

• We design a self-supervised degradation learning strategy
to model degradation representations of LR depth using
routing selection-based degradation regularization.

• We propose a degradation-oriented fusion scheme that se-
lectively transfers RGB content into depth by performing
DOFT based on learned degradation priors.

• Extensive experiments demonstrate that our DORNet
achieves state-of-the-art performance.

2. Related Work
2.1. Depth Map Super-Resolution
Synthetic Depth Super-Resolution. Many DSR meth-
ods [8, 23, 32, 38] have made significant progress on syn-
thetic data with known degradation. For example, Hui et
al. [11] develop a multi-scale guidance network to enhance
the boundary clarity of depth. In [50], Ye et al. utilize
the progressive multi-branch fusion network to restore HR
depth with sharp boundaries. Recently, a few guided image
filtering methods [12, 19, 59] have been proposed for trans-
ferring guidance information to the target. For instance, Li
et al. [18] design a learning-based joint filtering method
that propagates salient structures from guidance into tar-
get. Kim et al. [12] apply the deformable kernel network
to learn sparse and spatially-variant filter kernels. Addition-
ally, to extract common features from different modality in-
puts, Deng et al. [5] present a common and unique informa-
tion splitting network based on multi-modal convolutional
sparse coding. Similarly, Zhao et al. build the discrete co-
sine transform network [56] and the spherical spatial fea-
ture decomposition network [57] to separate the private and
shared features between RGB and depth. Unlike these ap-
proaches, we focus on utilizing the degradation representa-
tions of LR depth to adaptively address unconventional and
unknown degradation in real-world scenarios.
Real-world Depth Super-Resolution. Recently, real-
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Figure 3. Overview of DORNet. Given Dup as input, the degradation learning first encodes it to produce degradation representations D̃
and D. Then, D̃, D, Dlr , and I are fed into multiple degradation-oriented feature transformation (DOFT) modules, generating the HR
depth Dhr . Finally, D and Dhr are sent to the degradation regularization to obtain Dd, which is used as input for the degradation loss
Ldeg and the contrastive loss Lcont. The degradation regularization only applies during training and adds no extra overhead in testing.

world DSR [7, 9, 22, 29] targeting unknown degradation has
attracted broad attention. For instance, Liu et al. [21] pro-
pose a robust optimization framework to address the issues
of inconsistency in RGB edges and discontinuity in depth.
Song et al. [29] employ both non-linear degradation with
noise and interval down-sampling degradation to simulate
LR depth for real-world DSR. Besides, He et al. [9] con-
struct a real-world RGB-D dataset, and design a fast DSR
network based on octave convolution. More recently, Yan et
al. [42] introduce an auxiliary depth completion branch to
recover dense HR depth from incomplete LR depth. Yuan
et al. [53] develop a structure flow-guided model for real-
world DSR, which learns a cross-modal flow map to guide
the transfer of RGB structural information. Different from
previous researches, we pay more attention to modeling the
implicit degradation representations of LR depth, and selec-
tively propagating RGB information into depth data based
on the estimated degradation priors.

2.2. Degradation Representation Learning
Degradation representations have been widely applied in
several single-modal image restoration tasks [20, 36, 54].
For example, Wang et al. [36] learn degradation representa-
tions for blind image super-resolution by assuming that the
degradation of different patches within each image is the
same. Similarly, Xia et al. [40] develop a degradation esti-
mator based on knowledge distillation to model the degra-
dation representations. Li et al. [16] introduce a multi-scale
degradation injection network to jointly optimize reblurring
and deblurring. Additionally, some approaches [15, 51, 54]

explore solutions that can be applied to various degradation
in a single model. For instance, Li et al. [15] design an
all-in-one image restoration framework, which can recover
images with different degradation in one network. Inspired
by them, we develop a self-supervised degradation learning
strategy to estimate the degradation representations of LR
depth using routing selection-based degradation regulariza-
tion. The learned degradation priors are employed to guide
the feature transformation between multi-modal inputs.

3. Method
3.1. Network Architecture
Given LR depth Dlr ∈ Rh×w×1 with unknown degradation
and RGB I ∈ Rsh×sw×3 as inputs, our method aims to
recover accurate HR depth Dhr ∈ Rsh×sw×1 by learning
the degradation representations. h, w, and s represent the
height, width, and upsampling factor, respectively.

As shown in Fig. 3, our DORNet mainly consists of a
self-supervised degradation learning strategy (green part)
and a degradation-oriented fusion scheme (orange part).
Specifically, the upsampled LR depth Dup ∈ Rsh×sw×1 is
first input into the degradation learning, producing both the
router and the degradation representations, D̃ and D. Then,
D̃, D, Dlr, and I are sent to multiple degradation-oriented
feature transformation modules (DOFT), which selectively
propagate RGB information into the depth features, result-
ing in HR depth Dhr. Next, the degradation regulariza-
tion takes D as input and utilizes routing selection to adap-
tively generate degradation kernels with varying scales, all
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Figure 4. Visualization of error maps and degradation representa-
tion D̃ (a), and their gradient histograms (b).

of which are sent into the filtering and summation modules
together with Dhr, obtaining the new degraded depth Dd.
Finally, Dd is employed as input for the degradation loss
Ldeg and the contrastive loss [39] Lcont, further promoting
the learning of degradation representations.

Furthermore, to balance computational complexity and
performance, we present a more lightweight DSR model,
DORNet-T, which is achieved by reducing all convolutional
channels to 3

8 of those in DORNet, while maintaining the
entire network architecture unchanged.

3.2. Self-Supervised Degradation Learning
Degradation Learning. As illustrated in Fig. 3 (upper
left), given Dlr as input, bicubic upsampling is first uti-
lized to generate the upsampled depth Dup. Then, we em-
ploy the residual block frb and the degradation encoder Ed

to encode Dup into degradation representations D̃ and D,
where D̃ = frb(Dup) and D = Ed(D̃).

Next, inspired by the Mixture-of-Experts [1, 10, 24],
we construct a router to dynamically allocate the degrada-
tion representation D to degradation regularization, thereby
adaptively selecting degradation kernel generators of differ-
ent scales. The learned router R is formulated as:

R = σ(topK(Er(Dup))), (1)

where σ and Er are the softmax function and the routing
encoder, respectively. topK indicates the adaptive alloca-
tion of D to the top k degradation kernel generators from g
candidate generators based on their scores.
Degradation Regularization. As depicted in Fig. 3 (upper
right), given D as input, we first select k degradation kernel
generators of different scales under the assignment of router
R, adaptively producing a multi-scale degradation kernel
set S. As an example, the degradation kernel s2i+1 of size
(2i+ 1)× (2i+ 1) in S is represented as:

s2i+1 = f2i+1
g (R,D), i ≥ 1, (2)

where f2i+1
g refers to the degradation kernel generator with

a size of (2i+ 1)× (2i+ 1), consisting of MLP.

C

Degradation-Oriented Feature Transformation

DCN

Figure 5. Details of DOFT. ⊗ is element-wise multiplication while
c⃝ is concatenation. Orange rectangular box: residual group [55].

Then, the filtering and summation modules take the
degradation kernel set S and the predicted HR depth Dhr as
inputs to synthesize the degraded depth Dd, which is used
to supervise the learning of D̃ and D. Specifically, each
degradation kernel in S is employed as a convolution kernel
to individually convolve with Dhr. The resulting convolu-
tion outputs are summed to generate Dd:

Dd =
∑k

j=1 Λ(Sj ,Dhr), (3)

where Λ represents the convolution operation.
Next, we introduce a pre-trained VGG19 [28] to map

Dhr, Dd, and Dup to the latent space, yielding negative
sample F n, anchor sample F a, and positive sample F p,
respectively. These samples are used as inputs for the con-
trastive loss Lcont, pulling the degraded depth Dd closer to
the LR depth Dup and pushing it away from the HR depth
Dhr, thereby facilitating the learning of degradation repre-
sentations:

Lcont =
∑m

z=1 αz ·
fl1(F

z
p−F z

a)

fl1(F z
n−F z

a)
, (4)

where m denotes the number of latent space features, and α
is a weight vector. fl1 refers to the L1 distance.

Additionally, a degradation loss Ldeg is employed to fur-
ther optimize the degradation learning:

Ldeg =
1

Q

∑Q
q=1 ∥D

q
up −Dq

d∥1, (5)

where Q refers to the number of training samples. ∥ · ∥1
represents the L1 loss function.

Fig. 4 presents a visual comparison of the learned degra-
dation representation D̃ with the error maps of previ-
ous methods, as well as a comparison of their gradient
histograms. The visualizations and gradient distributions
demonstrate that D̃ successfully learns the degraded depth
structures that is challenging for previous approaches to re-
cover, thereby providing targeted guidance for enhancing
these severely degraded depth features.
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RMSE DJF [18] DJFR [19] CUNet [5] DKN [12] FDKN [12] FDSR [9] DCTNet [56] SUFT [25] SSDNet [57] SFG [53] SGNet [37] DORNet-T DORNet
Params. (M) 0.08 0.08 0.21 1.16 0.69 0.60 0.48 22.01 - 63.53 8.97 0.46 3.05
RGB-D-D 5.54 5.52 5.84 5.08 5.37 5.49 5.43 5.41 5.38 3.88 5.32 3.84 3.42
TOFDSR 5.84 5.72 6.04 5.50 5.77 5.03 5.16 4.37 - 4.52 4.33 4.87 4.21

Table 1. Quantitative comparison with existing state-of-the-art methods on the real-world RGB-D-D and TOFDSR datasets.

RMSE DJF [18] DJFR [19] CUNet [5] DKN [12] FDKN [12] FDSR [9] DCTNet [56] SUFT [25] SFG [53] SGNet [37] DORNet-T DORNet
RGB-D-D 5.83 5.78 5.96 5.52 5.69 5.66 5.61 5.53 4.08 5.44 4.24 3.68
TOFDSR 8.21 7.03 8.64 5.96 6.86 5.58 5.46 5.08 5.46 5.11 5.07 4.47

Table 2. Quantitative comparison of joint DSR and denoising on the real-world RGB-D-D and TOFDSR datasets.
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More importantly, degradation regularization is only ap-
plied in the training to facilitate the learning of degrada-
tion representations, and it does not introduce any additional
computational overhead during testing.

3.3. Degradation-Oriented Fusion
As shown in the orange part of Fig. 3, Dlr is first input into
bicubic upsampling. Then, the upsampled LR depth and I
are mapped to F 0

d and F 0
r , respectively.

Next, we take F 0
d, F 0

r , D̃, and D as inputs and re-
cursively conduct multiple DOFT to selectively propagate
RGB content into the depth features, generating the en-
hanced depth feature F t

d:

F t
d = f t

do(D̃,D,F t−1
d ,F t−1

r ), (6)

where f t
do refers to t-th DOFT.

Finally, the HR depth Dhr is predicted by fusing depth
features F 0

d and F t
d:

Dhr = fc(F
0
d + fc(F

t
d)), (7)

where fc refers to the convolutional layer, indicated by the
gray rectangular box in Fig. 3 and 5.
Degradation-Oriented Feature Transformation. Fig. 5
shows that DOFT includes degradation-oriented RGB fea-
ture learning (left part) and RGB-D feature fusion (right
part). Specifically, DOFT first maps D̃ to the offset △p and
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Figure 7. Robustness with different noises on RGB-D-D.

modulation scalar △m, both of which are utilized to dy-
namically adjust the receptive field of the deformable con-
volution (DCN) [60] fd. Then, we generate the weights w
of the DCN using D to focus its attention on RGB features
that match the degraded depth structures.

Next, given RGB feature F t−1
r as input, △p, △m, and w

are together used to adaptively learn the RGB feature F rd

aligned with the degradation representations:

F rd = fd(frg(F
t−1
r ),△p,△m,w) + frg(F

t−1
r ), (8)

where frg is the residual group [55], a feature extraction
unit consisting of residual block and channel attention.

Finally, we encode D̃ as an affinity coefficient σ for the
selective transfer of learned RGB feature F rd to the depth,
resulting in the enhanced depth feature F t

d:

F t
d = fc([F

t−1
d , σ ⊗ fc(F rd) + F rd]), (9)

where F t−1
d is the input depth feature of DOFT. [·] denotes

concatenation. ⊗ refers to element-wise multiplication.

3.4. Loss Function
Given the predicted HR depth Dhr and the ground-truth
depth Dgt, we first introduce the reconstruction loss Lrec

to optimize our DORNet:

Lrec =
1

Q

∑Q
q=1 ∥D

q
gt −Dq

hr∥1. (10)
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GT & RGB DCTNet SFG SGNet DORNet-T DORNet
Figure 8. Visual results (left) and error maps (right) on the real-world RGB-D-D dataset (w/o Noise).

GT & RGB DCTNet SFG SGNet DORNet-T DORNet
Figure 9. Visual results (left) and error maps (right) on the real-world TOFDSR dataset (w/o Noise).

Then, combining Eqs. (4) and (5), the total training loss
Ltotal is defined as:

Ltotal = Lrec + λ1Ldeg + λ2Lcont, (11)

where λ1 and λ2 are hyper-parameters.

4. Experiments
4.1. Experimental Setups
Datasets. We conduct extensive experiments on both
real-world RGB-D-D [9], TOFDSR [46], and synthetic
NYU-v2 [27] datasets. Specifically, for the RGB-D-D,
the training set comprises 2, 215 RGB-D pairs, while the
test set contains 405 pairs. Additionally, the colorization
method [14] is used to fill in the raw LR depth of the
TOFDC [46], obtaining the TOFDSR that includes 10K
RGB-D pairs for training and 560 pairs for testing. In the
real-world scenarios, the LR depth is obtained using the ToF
camera of the Huawei P30 Pro. Following [12, 37, 56], the
synthetic NYU-v2 consists of 1, 000 RGB-D pairs for train-
ing and 449 pairs for testing, with the LR depth generated
by bicubic downsampling from the GT depth.

To weaken the interference of erroneous depth in the
TOFDSR dataset, all methods calculate the loss and RMSE
only for valid pixels where the GT depth is within the range
of 0.1m to 5m. For the RGB-D-D and NYU-v2 datasets, we
maintain the same settings as in previous methods [9, 9, 56].
Implementation Details. We employ the root mean square
error (RMSE) in centimeter as the evaluation metric to be
consistent with previous DSR methods [9, 31, 53, 57]. The
Adam [13] optimizer with an initial learning rate of 1×10−4

is used to train our DORNet. Besides, we implement our
model in PyTorch using the NVIDIA GeForce RTX 4090.
The hyper-parameters are set as λ1 = λ2 = 0.1.

4.2. Comparison with the State-of-the-Art
We compare DORNet with popular methods, i.e., DJF [18],
DJFR [19], PAC [30], CUNet [5], DKN [12], FDKN [12],
FDSR [9], GraphSR [4], DCTNet [56], SUFT [25],
DADA [23], SSDNet [57], SFG [53], and SGNet [37]. To
ensure a fair comparison, we directly cite the data from their
papers for methods with existing experimental results. For
other approaches, we utilize their released code to retrain
and test under the same settings.
Comparison on Real-World Dataset. Tab. 1 indicates that
our DORNet outperforms other advanced methods on the
real-world RGB-D-D and TOFDSR datasets. From the first
two rows of Tab. 1, it can be seen that DORNet surpasses
SFG [53] by 0.46cm on RGB-D-D while also significantly
reducing the number of parameters. Moreover, the third
row demonstrates that our method decreases the RMSE by
0.12cm on TOFDSR compared to SGNet [37].

Furthermore, Figs. 8 and 9 present the visual results on
the RGB-D-D and TOFDSR. In the error maps, a brighter
color means a larger error. Obviously, for severely de-
graded LR depth, our method succeeds in recovering ac-
curate depth structures. For instance, the handbag in Fig. 8
predicted by our method is more precise than others. Addi-
tionally, the error maps in Fig. 9 show that DORNet recon-
structs HR depth with fewer errors.

Fig. 6 illustrates that our method achieves a satisfactory
balance among parameters, inference time, FPS, and per-
formance. For example, compared to lightweight DCTNet
(0.48M ), our DORNet-T (0.46M ) reduces RMSE by 29%
and inference time by 35%. Moreover, DORNet surpasses
the second-best approach by 11% while significantly de-
creasing both parameters and inference time.
Robustness to Noise. Tab. 2 demonstrates that our method
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GT & RGB FDSR DCTNet DORNet-T DORNetDKNFDKNBicubic GT & RGB
Figure 10. Visual results (top) and error maps (bottom) on the synthetic NYU-v2 dataset (×8).

RMSE PAC [30] CUNet [5] DKN [12] FDSR [9] GraphSR [4] DCTNet [56] SUFT [25] DADA [23] SSDNet [57] SFG [53] SGNet [37] DORNet-T DORNet
Params. (M) - 0.21 1.16 0.60 32.53 0.48 22.01 32.53 - 63.53 35.42 0.46 3.05

×4 1.89 1.92 1.62 1.61 1.79 1.59 1.12 1.54 1.60 1.45 1.10 1.33 1.19
×8 3.33 3.70 3.26 3.18 3.17 3.16 2.51 2.74 3.14 2.84 2.44 2.90 2.70
×16 6.78 6.78 6.51 5.86 6.02 5.84 4.86 4.80 5.86 5.56 4.77 5.95 5.60

Table 3. Quantitative comparison with existing state-of-the-art methods on the synthetic NYU-v2 dataset.

exhibits robustness in noisy environments. Similar to pre-
vious approaches [12, 53], we add Gaussian noise (mean
0 and standard deviation 0.07) and Gaussian blur (standard
deviation 3.6) to upsampled LR depth as new input. We
can see that DORNet outperforms SFG [53] by 0.40cm in
RMSE on the RGB-D-D. For experiments on adding noise
before LR depth pre-upsampling, please see our appendix.

Fig. 7 shows the comparison across different noise lev-
els, with the standard deviation of Gaussian noise rang-
ing from 0.04 to 0.16, while the Gaussian blur remains
unchanged. We can observe that as the noise levels in-
crease, the performance of all methods gradually declines.
However, our DORNet consistently outperforms other ap-
proaches at each noise level. For instance, our method re-
duces RMSE by 0.36cm (standard deviation 0.10) and by
0.29cm (standard deviation 0.13) compared to SFG [53].
Comparison on Synthetic Dataset. Tab. 3 shows that our
method achieves comparable performance on the NYU-v2
dataset. The first row lists the model parameters with a
scale factor of 4. For example, compared to the SGNet [37],
our DORNet significantly reduces the parameters by 91%,
while only increasing the RMSE by 8% (×4). Furthermore,
for lightweight DSR, our DORNet-T outperforms DCTNet
by 16% and FDSR by 17% in RMSE (×4). Fig. 10 reveals
that the depth structures predicted by our method is more
closely aligned with the ground-truth depth. For instance,
the edges of chair exhibit less error than others.

In summary, all of these quantitative comparisons and
visual results demonstrate that our method effectively en-
hances the performance of real-world DSR.

4.3. Generalization Ability
To further evaluate the generalization ability of our method,
we implement it on pan-sharpening and depth completion
tasks. Please see our appendix for the details.

Methods Params (M) w/o Noisy w/ Noisy

baseline + DASR [36] 3.44 3.86 4.06
baseline + KDSR [40] 3.73 3.65 3.86
baseline + DL & DR (Ours) 3.05 3.42 3.69

Table 4. Comparison of different degradation learning methods
on the real-world RGB-D-D dataset. DL indicates Degradation
Learning, while DR refers to Degradation Regularization.

4.4. Ablation Studies

Degradation Learning and Regularization. Fig. 11 and
Tab. 4 present the ablation study of degradation learning
(DL) and degradation regularization (DR). For the baseline,
we first remove the entire DL and DR in DORNet. Then,
we utilize concatenation to replace all DOFT. Additionally,
only the reconstruction loss is used during the training.

Fig. 11(a) reveals that DL significantly reduces RMSE
by modeling the degradation representations. When DR
is combined, our method achieves the best performance.
For example, DORNet outperforms the baseline by 0.82cm
(w/o Noisy) and 0.83cm (w/ Noisy). Fig. 11(b) presents
the visual results of the depth features and predicted depth.
Compared to the baseline, DL contributes to generating
clearer structures. When DR is employed together with DL,
our approach produces more accurate depth.

Furthermore, Tab. 4 lists the comparison results of
DL and DR with previous degradation learning meth-
ods. Specifically, we replace the entire DL and DR with
the degradation learning modules from DASR [36] and
KDSR [40], respectively. It can be observed that our ap-
proach surpasses DASR by 0.44cm and KDSR by 0.23cm
in RMSE (w/ Noisy). These results further demonstrate that
our DL and DR can learn more accurate degradation repre-
sentations and effectively enhance DSR performance.
Different Recursion Numbers of DOFT. Fig. 12(a) de-

15819



(a) Quantitative comparison (b) Visual comparison
w/ DLBaseline w/ DL & DR

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

RGB-D-D (w/o Noisy) RGB-D-D (w/ Noisy)

Baseline
w/ DL
w/ DL & DR

R
M

SE
 (c

m
)

4.6

4.4

4.2

4.0

3.8

3.6

3.4

3.2

D
ep

th
 fe

at
ur

es
Pr

ed
ic

te
d 

de
pt

h

RGB & GT

Figure 11. Ablation study of degradation learning (DL) and degradation regularization (DR) on the RGB-D-D dataset.
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degradation kernel generators. ‘g4k3’: DR selects 3 (k) out of 4 generators (g) of size (2i+1)× (2i+1), 1 ≤ i ≤ 4, based on the router.

picts the ablation study of different iterations of DOFT. The
baseline is the entire DORNet with all loss functions. It
is evident that performance incrementally improves as the
number of DOFT iterations increases. When the number of
iterations reaches 6, the reduction in RMSE begins to slow
down. To better trade-off between the model complexity
and performance, our DORNet iterates 5 DOFT.
Different Loss Functions. Fig. 12(b) presents the ablation
study of different loss functions. The baseline is the en-
tire DORNet using only the reconstruction loss Lrec. Ob-
viously, we can see that both the degradation loss Ldeg

and contrastive loss Lcont contribute to performance im-
provement. When Ldeg and Lcont are deployed together,
our method achieves the lowest RMSE. For example, com-
pared to the baseline, our DORNet decreases the RMSE by
0.20cm (w/o Noisy) and 0.27cm (w/ Noisy) on RGB-D-D.
Number of Generators. Fig. 12(c) shows the ablation
study of different numbers of degradation kernel generators
on the RGB-D-D dataset (w/o Noisy). The baseline is the
entire DORNet with Lrec, Ldeg , and Lcont. We conduct
experiments with 8 sets of different generator selection set-
tings. As an example, ‘g4k3’ indicates that DR adaptively
selects 3 out of 4 different-scale degradation kernel gener-
ators based on the router R, producing 3 degradation ker-
nels of different scales. Firstly, we observe that the RMSE
of ‘g4k1’ is lower than that of ‘g1k1’, ‘g2k1’, ‘g3k1’, and

‘g5k1’, indicating that more generators may not necessar-
ily result in better performance. Secondly, ‘g4k3’ achieves
better DSR performance than ‘g4k1’, ‘g4k2’, and ‘g4k4’.
Therefore, we select ‘g4k3’ as the setting for DORNet.

5. Conclusion
In this paper, we proposed the degradation oriented and
regularized network, a novel real-world DSR solution that
learns degradation representations of low-resolution depth
to provide targeted guidance. Specifically, we designed a
self-supervised degradation learning strategy to model the
degradation representations using routing selection-based
degradation regularization. This enables label-free implicit
degradation learning that adaptively addresses unknown
degradation in real-world scenes. Furthermore, we devel-
oped a degradation-oriented feature transformation mod-
ule to perform effective RGB-D fusion. Based on the
learned degradation priors, the module selectively propa-
gates RGB content into depth, thereby restoring accurate
high-resolution depth. Extensive experiments demonstrate
the effectiveness and superiority of our method.
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