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Abstract
Transformer-based networks have achieved strong performance
in low-level vision tasks like image deraining by utilizing spatial
or channel-wise self-attention. However, irregular rain patterns
and complex geometric overlaps challenge single-paradigm archi-
tectures, necessitating a unified framework to integrate comple-
mentary global-local and spatial-channel representations. To ad-
dress this, we propose a novel Cross Paradigm Representation and
Alignment Transformer (CPRAformer). Its core idea is the hier-
archical representation and alignment, leveraging the strengths
of both paradigms (spatial-channel and global-local) to aid image
reconstruction. It bridges the gap within and between paradigms,
aligning and coordinating them to enable deep interaction and fu-
sion of features. Specifically, we use two types of self-attention in
the Transformer blocks: sparse prompt channel self-attention (SPC-
SA) and spatial pixel refinement self-attention (SPR-SA). SPC-SA
enhances global channel dependencies through dynamic sparsity,
while SPR-SA focuses on spatial rain distribution and fine-grained
texture recovery. To address the feature misalignment and knowl-
edge differences between them, we introduce the Adaptive Align-
ment Frequency Module (AAFM), which aligns and interacts with
features in a two-stage progressive manner, enabling adaptive guid-
ance and complementarity. This reduces the information gap within
and between paradigms. Through this unified cross-paradigm dy-
namic interaction framework, we achieve the extraction of the most
valuable interactive fusion information from the two paradigms.
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Extensive experiments demonstrate that our model achieves state-
of-the-art performance on eight benchmark datasets and further
validates CPRAformer’s robustness in other image restoration tasks
and downstream applications.
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1 Introduction
Single Image Deraining (SID) is a traditional low-level vision task
that aims to restore a clear, high-quality image from a given rainy
image. As it plays a critical role in downstream tasks across vari-
ous fields, including video surveillance, autonomous driving, and
medical imaging, it has garnered increasing attention from both
academia and industry. Due to its ill-posed nature, early methods
typically applied various priors based on the statistical characteris-
tics of rain streaks and clean images [31, 70]. However, in complex
and diverse rainy scenarios, such priors do not always hold.

Recently, many studies have proposed convolutional neural net-
work (CNN)-based methods to address this challenge [24, 29, 30, 44,
65, 68]. However, due to the limited receptive field of convolution
operators, long-range spatial modeling is hindered, which restricts
model performance. Fortunately, inspired by the success of Trans-
formers in natural language processing and advanced vision tasks
[17, 49, 51, 58], researchers have developed Transformer-based ar-
chitectures for the SID task [6, 50, 59]. Leveraging the self-attention
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Figure 1: Feature patterns obtained from four perspectives
are distinct, two deraining paradigms offers unique advan-
tages. Recent deraining research mainly focuses on spatial-
channel or global-local paradigms, lacking a framework that
effectively integrates these two paradigms.

mechanism, Transformer-based methods can establish global de-
pendencies, alleviating the limitations of CNN-based approaches
and demonstrating superior deraining performance. Recognizing
the potential of Transformers, some researchers have explored
their effective application in SID tasks from different perspectives.
In terms of spatial modeling, some methods use non-overlapping
spatial windows to capture more global dependencies, enhancing
spatial pixel modeling [59]. Regarding channels, "transpose" at-
tention has been proposed [67], where self-attention is computed
along the channel dimension instead of the spatial dimension. These
methods, with strong feature extraction and modeling capabilities
in their respective dimensions, have achieved remarkable results.
Intuitively, extracting spatial features and capturing channel con-
text information both play crucial roles in enhancing Transformer
performance in image restoration [10]. Additionally, due to the
intricate intertwining of rain streaks and the rain-free background,
both global and local features are essential for the challenging SID
task. However, the self-attention mechanism in Transformers does
not fully leverage the local invariance of CNNs. To address this,
some researchers have attempted to combine CNNs with Trans-
formers [6, 8], inheriting CNNs’ advantage in local modeling and
Transformers’ strength in capturing long-range dependencies.

However, two key questions naturally arise: (1) How can we si-
multaneously leverage information from all paradigms? As shown
in Fig. 1, representations from different perspectives undoubtedly
play a critical role in SID task performance; (2) How can we ef-
fectively align and aggregate the two feature types within each
paradigm? The distinct feature models across paradigms make sim-
ple summation or concatenation prone to information loss, failing
to significantly boost performance. To address these issues, we
propose a novel hybrid architecture: the Cross Paradigm Represen-
tation and Alignment Transformer (CPRAformer). Its core idea is
to establish a cross-paradigm representation learning framework
through dimensional consistency (spatial-channel perspective) and
multi-perspective integration (global-local perspective), along with

alignment and hierarchical fusion of corresponding features in each
paradigm. Specifically, it comprises two carefully designed compo-
nents: Cross-Paradigm Interaction and Alignment Self-Attention
(CPIA-SA) and Multi-Scale Flow Gating Network (MSGN).

In CPIA-SA, we introduce two types of self-attention: Sparse
Prompt Channel Self-Attention (SPC-SA) and Spatial Pixel Refine-
ment Self-Attention (SPR-SA). SPC-SA computes attention along
the channel dimension and dynamically filters attention values in
the dense attention matrix using prompt information. This allows
the network to exploit sparsity, retaining the most valuable atten-
tion information while minimizing excessive noise interactions that
could degrade image restoration quality, thus effectively extracting
global-channel information. Conversely, SPR-SA utilizes an efficient
CNN-based architecture to approximate self-attention, enabling
the effective modeling of local fine-grained features and the rela-
tionships between neighboring spatial pixels, fully leveraging local
spatial characteristics. Additionally, these two self-attention mech-
anisms are complementary. SPC-SA provides global information
between features for SPR-SA, thereby expanding the receptive field
of pixels. Meanwhile, SPR-SA enhances the spatial representation
of each feature map, which aids in modeling channel context.

At the same time, to further promote alignment and interaction
within each paradigm, we propose a two-stage progressive fusion
strategy called the Adaptive Alignment Frequency Module (AAFM).
Using adaptive weighting, it aligns corresponding branches and
enhances interactions between frequency spectra to aggregate and
strengthen internal feature information. Moreover, another key
component of the Transformer module is the feed-forward net-
work (FFN) [17], which typically extracts features through fully
connected layers but often overlooks the critical multi-scale infor-
mation needed for SID tasks [1, 6]. To address this limitation, we
introduce the Multi-Scale Flow Gating Network (MSGN). Utilizing a
gating mechanism, MSGN incorporates multi-scale representation
learning, providing additional nonlinear information to the FFN
and enhancing its capability to capture essential features.

In summary, through the design described above, our CPRAformer
achieves cross-paradigm feature pattern learning and information
alignment, thereby enabling robust feature representation. Our
main contributions are summarized as follows:

• We propose a hybrid model for SID, CPRAformer, which
integrates the advantages of spatial-channel and global-local
paradigms. Through cross-paradigm dynamic interaction, it
aligns and adaptively fuses feature patterns between the two
paradigms.

• Weutilize both SPC-SA and SPR-SA to extract features across
spatial and channel dimensions, effectively modeling global
dependencies while capturing local details for complemen-
tary feature integration.

• To bridge the feature gap between paradigms, we develop
the AAFM, which first performs feature alignment through
adaptive weighting and then achieves feature fusion via
frequency-domain interaction. This facilitates better coor-
dination and deep interaction between different types of
information. In addition, the MSGN is also included to learn
scale-aware spatial features.
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Figure 2: The overall architecture of our proposed CPRAformer.

2 Related works
2.1 Single Image Deraining
Traditional rain removal methods often rely on handcrafted priors
[21, 27, 31, 39, 70], which are subjective and unable to adapt to
complex rainy scenes. To address this issue, many researchers have
developed CNN-based methods [24, 29, 30, 44, 53, 64–66, 68] for
image deraining, achieving promising results. However, convolu-
tions struggle to capture long-range dependencies in both spatial
and channel dimensions. Inspired by the success of Transformers
in advanced vision tasks [17, 49, 51, 58], they have also been ap-
plied to image deraining [6, 34, 43, 50, 52, 55, 58–60]. Transformers,
as a new network backbone, show significant improvements over
CNN-based methods due to their excellent global context awareness
enabled by self-attention. However, a limitation of self-attention is
that tokens with low attention values or irrelevant tokens can in-
terfere with the dense attention matrix, potentially harming output
features [6, 48, 62]. As shown in Fig. 3, to overcome this, we pro-
pose an adaptive sparse attention mechanism, which dynamically
adjusts the sparse range using a learnable operator. This approach
maximizes network sparsity and reduces excessive interference
from irrelevant noise in naive self-attention.

2.2 Feature Aggregation
Global & Local. To leverage the advantage of CNNs in extracting
local features and Transformers in global modeling, many hybrid
models have been proposed. For example, ELF [22] was the first
to unify these architectures into a lightweight deraining model
based on association learning. Inspired by progressive learning,
HCT-FFN [8] introduced a new staged hybrid deraining network.
SMFANet [74] uses adaptive feature aggregation to synergize local
and non-local feature interactions. Dual-former [5] combines the
global modeling power of self-attention with the local capability of
convolutions in a unified architecture. It uses a hybrid Transformer

block to model long-range spatial dependencies and handle uneven
channel distributions.
Spatial & Channel. In CNNs, researchers apply attention mech-
anisms along the spatial and channel dimensions to enhance fea-
ture representation, as demonstrated by models like RESCAN [30],
MSPFN [24], and MPRNet [68]. In Transformer-based approaches,
spatial self-attention is primarily used to capture long-range depen-
dencies between pixels; for instance, IDT [61] uses dual Transform-
ers with window and spatial attention for deraining. Additionally,
some studies integrate channel self-attention in Transformers to
combine spatial and channel information. Notably, Restormer [67]
designs an efficient Transformer model by estimating self-attention
along the channel dimension, achieving significant performance
gains, while DRSFormer [6] proposes a sparse Transformer along
the channel dimension to fully exploit the most informative fea-
tures for deraining. DAT [10] alternates between spatial and channel
self-attention mechanisms across consecutive Transformer blocks,
aggregating features from the spatial and channel dimensions both
across and within blocks.
Motivation. Extensive research on both paradigms, namely global-
local as well as spatial-channel, demonstrates the critical role of fea-
ture representation in complex rainy scenes. However, no study has
simultaneously considered both paradigms (see Fig. 1). Therefore,
we introduce two types of self-attention mechanisms into image
deraining for comprehensive information exploration and represen-
tation. Additionally, we design AAFM to dynamically achieve both
inter-paradigm and intra-paradigm feature aggregation, iteratively
refining feature coherence across scales and dimensions.

3 Method
3.1 Overall Pipeline
The overall pipeline of our proposed CPRAformer is illustrated in
Fig. 2, which adopts an encoder-decoder architecture with skip con-
nections. Specifically, given an input rain image 𝐼rain ∈ R𝐻×𝑊 ×3,
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we first apply a 7 × 7 convolution to obtain the low-level feature
embedding 𝐹0 ∈ R𝐻×𝑊 ×𝐶 , where𝐻 ,𝑊 , and𝐶 represent the height,
width, and channels, respectively. The low-level feature embedding
is then fed into the backbone network, which consists of a 4-level
encoder-decoder structure. In the encoder stage, the resolution
of the high-resolution input is reduced by a factor of 2 while in-
creasing the number of channels, whereas in the decoder stage, the
process is reversed. Each encoder and decoder is composed of 𝑁𝑖 (
𝑖 = 1, 2, 3, 4) stacked Cross Paradigm Representation and Alignment
Transformer Block (CPRAformerBs). Within each CPRAformerB,
we develop the CPIA-SA to extract and aggregate features from
both spatial-channel and global-local paradigms simultaneously.
Additionally, we incorporate MSGN within each CPRAformerB,
which leverages an elegant gating mechanism to extract multi-scale
information, aiding in the image-deraining process.

As shown in Fig. 2, CPIA-SA is composed of three main com-
ponents: Sparse Prompt Channel Self-Attention (SPC-SA), Spatial
Pixel Refinement Self-Attention (SPR-SA), and Frequency Adaptive
Interaction Module (AAFM). SPC-SA, using the Efficient Prompt
Guide Operator (EPGO), effectively explores the sparsity of the neu-
ral network, adaptively retaining the most valuable attention values.
This enables efficient extraction of rain-degraded features that han-
dle spatial variations while modeling global channel context. In
contrast, SPR-SA focuses on modeling the spatial background, en-
hancing the spatial pixel representation of each feature map, and
facilitating accurate background restoration through fine-grained
local features. To bridge the gap between SPC-SA and SPR-SA in
terms of spatial-channel and global-local knowledge, and to fully
integrate features within both paradigms, we introduce AAFM.
AAFM utilizes a dual-stage progressive strategy to alignment and
fuse paradigm-specific features comprehensively.

3.2 Sparse Prompt Channel Self-Attention
As shown in Fig. 2, the self-attention mechanism in SPC-SA op-
erates along the channel dimension. Specifically, given the input
embedding feature 𝐹 ∈ R𝐻×𝑊 ×𝐶 , point-wise convolution (PW-
Conv) and 3×3 depth-wise convolution (DWConv) are applied to 𝐹
to aggregate cross-pixel channel information, generating the matri-
ces for query𝑄 , key𝐾 , and value𝑉 . Next, we perform a dot-product
operation on the reshaped 𝑄 and 𝐾 to generate a dense attention
matrix 𝑀 ∈ R𝐶×𝐶 . However, we observe that the tokens in the
keys are not always relevant to those in the queries, and the self-
attention values estimated using irrelevant tokens introduce noise
interactions and information redundancy, affecting the quality of
image recovery. To address this, we introduce a Top-k mechanism,
which differs from traditional self-attention mechanisms, to filter
the information in the attention matrix, retaining the most signifi-
cant attention values and avoiding noise that can lead to artifacts
in the deraining process. For example, with 𝑘 = 4/5, we only retain
the top 80% of attention scores, while the remaining elements are
masked to zero. Notably, we also develop a novel learnable operator:
the Efficient Prompt Guide Operator (EPGO), which dynamically
generates prompt information based on the input, guiding the 𝐾
values to achieve adaptive modulation and facilitating a dynamic
selection process in the attention matrix. As shown in Fig. 3, unlike

(a) Vanilla Self-Attention (b) Top-K Sparse Self-Attention (K=1/4)

K

K

(c) Dynamic Top-K Sparse Self-Attention  (Ours)

Query Patch Attention Weight

Figure 3: Comparison of different self-attentionmechanisms.
(a) The naive self-attention mechanism [67] computes and
retains all tokens. (b) The Top-K sparse attentionmechanism
[6] sets a fixed K value (here, K is set to 1/4) and retains only
the top K% tokens with the highest attention values while
setting the remaining tokens to zero. (c) Our dynamic Top-
K sparse attention mechanism adaptively modulates the K
value based on input features. For instance, compared to the
fixed K in (b), the K value increases in the upper image and
decreases in the lower image to adapt to different images.

previous studies [6, 67], we propose a novel dynamic sparse mech-
anism that fully exploits the sparsity of neural networks. Formally,
the above process is expressed as follows:

Ω
(𝑘 )
𝑖

= arg max
𝑆⊂{1,...,𝑁 }

∑︁
𝑗∈𝑆

𝑀𝑖 𝑗 , (1)

Ω (𝑘 ) =
{
Ω
(𝑘 )
1 ,Ω

(𝑘 )
2 , . . . ,Ω

(𝑘 )
𝑁

}
, (2)

[𝑀𝑘 ]𝑖 𝑗 =
{
1, if 𝑗 ∈ Ω

(𝑘 )
𝑖

⇐⇒ 𝑀𝑖 𝑗 ∈ Top𝑘 (𝑀𝑖,:),
0, otherwise.

(3)

Here, Ω (𝑘 )
𝑖

represents the index set of the top-k elements in the i-th
row, that is, the column indices of the k most important elements
in the i-th row of matrix 𝑀 . Formally, the process of SPC-SA is
expressed as

𝑆𝑃𝐶-𝑆𝐴 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑇𝑘 (
𝑄𝐾𝑇
√
𝑑

))𝑉 , (4)

where 𝑇𝑘 (·) represents the Top-k selection operation after modula-
tion by the Efficient Prompt Guide Operator., and

√
𝑑 represents an

optional temperature coefficient used to control the magnitude of
the dot product between 𝑄 and 𝐾 before applying softmax. Simi-
lar to most previous works [17], we employ a multi-head strategy,
concatenating all outputs of the multi-head attention and then
obtaining the final result through a linear projection.
Efficient Prompt Guide Operator. Since a fixed 𝑘 leads to a rigid
pattern structure that cannot dynamically update with the neural
network, it struggles to adapt to the complex rain conditions in
real-world scenarios. To address this, we propose the EPGO, which
provides the neural network with dynamic prompt information.
This guides the attentionmatrix towards optimal selection, allowing
the model to optimize attention allocation in both sparse and dense
attention scenarios, preserving the most valuable information in
the current features. As shown in Fig. 2, the architecture of EPGO
works as follows: given the input feature 𝐹 ∈ R𝐻×𝑊 ×𝐶 , two linear
layers with hidden ReLU activation and a Sigmoid function are
first used to generate the prompt guide features. These features
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Table 1: Comparison of quantitative results on five datasets. Bold and underlined indicate the best and second-best results.

Test100 [73] Rain100H [63] Rain100L [63] Test2800 [18] Test1200 [71] Average
Method Year PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

RESCAN [30] ECCV2018 21.59 0.726 18.01 0.467 24.15 0.791 24.50 0.765 24.40 0.759 22.53 0.702
PReNet [44] CVPR2019 23.17 0.752 17.63 0.487 27.76 0.876 27.20 0.825 26.05 0.792 24.36 0.746
SPDNet [65] ICCV2021 24.25 0.848 25.87 0.809 28.63 0.880 31.05 0.904 30.42 0.893 28.04 0.867
PCNet [25] TIP2021 23.29 0.762 20.83 0.563 26.64 0.817 27.10 0.818 26.53 0.791 24.88 0.750
MPRNet [68] CVPR2021 25.66 0.859 28.23 0.850 31.94 0.930 32.14 0.925 31.32 0.901 29.86 0.893
HINet [3] CVPRW2021 23.21 0.767 20.85 0.598 27.03 0.842 28.36 0.843 27.77 0.821 25.44 0.774
DANet [23] IJCAI2022 23.96 0.839 23.00 0.791 29.51 0.906 30.32 0.903 29.99 0.888 27.36 0.865
Uformer [59] CVPR2022 23.87 0.815 22.43 0.700 28.39 0.883 29.71 0.886 28.65 0.856 26.61 0.828
ALformer [22] ACMMM2022 24.41 0.844 25.10 0.807 29.39 0.903 31.36 0.916 30.40 0.897 28.13 0.874
NAFNet [2] ECCV2022 25.75 0.845 26.76 0.813 31.27 0.925 31.71 0.918 30.62 0.892 29.22 0.879
MIRNetV2 [69] TPAMI2022 25.76 0.867 28.05 0.846 32.53 0.935 32.33 0.925 32.38 0.915 30.21 0.897
MFDNet [56] TIP2023 25.90 0.870 27.06 0.850 32.76 0.944 31.92 0.925 31.15 0.909 29.76 0.899
HCT-FFN [8] AAAI2023 24.86 0.847 26.70 0.819 29.94 0.906 31.46 0.915 31.23 0.901 28.84 0.878
DRSformer [6] CVPR2023 27.86 0.885 28.16 0.864 34.79 0.954 32.80 0.931 30.99 0.906 30.92 0.908
ChaIR [11] KBS2023 28.19 0.879 28.69 0.862 34.52 0.953 32.85 0.931 31.30 0.903 31.11 0.906
IRNeXT [14] ICML2023 25.80 0.860 27.22 0.833 31.65 0.931 30.53 0.917 29.02 0.898 28.85 0.888
OKNet [13] AAAI2024 25.43 0.858 24.01 0.804 31.19 0.928 29.32 0.911 27.56 0.886 27.50 0.877
AST [76] CVPR2024 26.07 0.859 27.40 0.833 32.03 0.932 31.65 0.921 30.69 0.897 29.57 0.889
SFHformer [26] ECCV2024 25.67 0.856 27.25 0.832 32.97 0.944 32.27 0.925 31.50 0.904 29.94 0.892
Nerd-rain [7] CVPR2024 27.16 0.869 28.07 0.838 33.72 0.949 32.63 0.927 30.45 0.890 30.41 0.895
MSDT [1] AAAI2024 27.79 0.878 29.05 0.856 34.75 0.955 32.68 0.930 32.12 0.917 31.28 0.907
FSNet [12] TPAMI2024 27.95 0.884 28.70 0.860 34.10 0.952 32.68 0.931 31.26 0.910 30.94 0.908
AdaIR [15] ICLR2025 28.64 0.889 29.48 0.871 35.84 0.962 32.70 0.930 30.58 0.907 31.45 0.912

CPRAformer (Ours) – 29.65 0.895 29.68 0.875 35.98 0.964 33.00 0.933 31.52 0.913 31.97 0.916

Table 2: Quantitative evaluations on Raindrop dataset [40].
Bold andunderlined indicate the best and second-best results.

Raindrop-A [40] Raindrop-B [40]
Method Year PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

RESCAN [30] ECCV2018 25.09 0.837 22.55 0.727
PReNet [44] CVPR2019 25.61 0.884 22.99 0.787
SPDNet [65] ICCV2021 28.82 0.896 24.89 0.792
PCNet [25] TIP2021 25.68 0.837 22.89 0.726
MPRNet [68] CVPR2021 29.96 0.916 25.58 0.815
HINet [3] CVPRW2021 25.81 0.882 23.17 0.787
DANet [23] IJCAI2022 29.54 0.914 25.28 0.812
Uformer [59] CVPR2022 28.99 0.903 25.02 0.803
ALformer [22] ACMMM2022 29.11 0.911 25.11 0.809
NAFNet [2] ECCV2022 29.81 0.907 25.33 0.806
MFDNet [56] TIP2023 28.57 0.882 24.53 0.766
HCT-FFN [8] AAAI2023 28.09 0.891 24.48 0.791
DRSformer [6] CVPR2023 30.83 0.923 25.86 0.819
ChaIR [11] KBS2023 30.88 0.925 25.84 0.820
IRNeXT [14] ICML2023 30.69 0.924 25.79 0.819
OKNet [13] AAAI2024 30.39 0.924 25.65 0.818
SFHformer [26] ECCV2024 23.09 0.869 21.23 0.772
Nerd-rain [7] CVPR2024 30.96 0.924 25.96 0.819
MSDT [1] AAAI2024 30.85 0.922 25.89 0.818
FSNet [12] TPAMI2024 30.83 0.925 25.99 0.819
AdaIR [15] ICLR2025 30.99 0.924 25.97 0.817

CPRAformer (Ours) – 31.19 0.926 26.01 0.821

are then flattened into a low-dimensional vector. Finally, the low-
dimensional vector is averaged and multiplied element-wise with
the channel 𝐶 of the input feature 𝐹 , adapting to the dimensional
changes in the features and effectively setting a soft threshold for
the 𝐾 values.

3.3 Spatial Pixel Refinement Self-Attention
Unlike SPC-SA, the motivation of SPR-SA is to efficiently model
spatial information for each pixel and effectively extract local de-
tails. However, existing spatial self-attention mechanisms often
come with high computational costs and have limited capability in
modeling local details [59]. To address this, we propose a simple
yet efficient self-attention approximation module using convolu-
tions. By capturing the positional information of each pixel, the

features are reweighted, allowing each pixel to perceive different
degradation signals from the same position across all channels. This
approach enhances the model’s ability to handle spatial variations
in deraining tasks. The specific operations are illustrated in Fig. 2,
and the computation is formulated as follows:

𝐹𝐿 = 𝑃𝑊 (𝐷𝑊 3×3 (𝐿𝑖𝑛𝑒𝑎𝑟 (𝐹 ))), (5)
𝐹𝑆𝑃 = 𝐺𝐴𝑃 (𝐹𝐿), (6)

𝐹 ′ = 𝑃𝑊 (𝜑 (𝐹𝑆𝑃 ⊙ 𝐹𝐿)), (7)
where PW (·) denotes point-wise convolution, DW (·)x×x repre-
sents 𝑥 × 𝑥 depth-wise convolutions, GAP (·) stands for global av-
erage pooling, and 𝜑 (·) refers to the GELU function.

3.4 Adaptive Alignment Frequency Module
Although SPC-SA and SPR-SA capture global channel features and
local spatial features respectively, effectively integrating the infor-
mation from these two branches becomes a critical challenge. An
intuitive observation is that there exists an uncertain knowledge
gap between the convolution-based local features from CNN and
the self-attention-based global features from Transformer, as well
as between spatial and channel dimension features [8, 10]. Thus,
simply concatenating or adding these features cannot fully maxi-
mize their potential. To address this issue, we propose the AAFM.
AAFM adopts a two-stage process that progressively integrates
the features from both paradigms layer by layer. First, based on
the types of features from the two branches, AAFM adaptively
reweights the features along either the spatial or channel dimen-
sions to align the first paradigm (i.e., spatial-channel). Then, we
introduce the features into the frequency domain, leveraging the
Fourier transform to enhance the interaction across multiple fre-
quency spaces. This allows each pixel to perceive patterns from
other pixels, achieving the aggregation of global features into local
features and the diffusion of local features into global ones, thus re-
alizing the deep interaction and fusion of the second paradigm (i.e.,
global-local). Specifically, given the input features 𝐹𝑠𝑝𝑐 and 𝐹𝑠𝑝𝑟
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Figure 4: The qualitative comparison on Test100 [73]. See the supplements for more visualizations.

Input HCT-FFN SFHformer Nerd-rain MSDT FSNet Ours GT

Figure 5: The qualitative comparison on raindrop datasets [40]. Our result has the best visual quality and details.

Rainy Input HCT-FFN DRSformer FSNet Nerd-rain MSDT DAIT (Ours)

Figure 6: Comparison of visual results on a real-world dataset [57]. Our result has the best visual quality and details.

from the two branches, AAFM first applies two interaction opera-
tions: Spatial Alignment and Channel Alignment, which generate
spatial attention maps and channel attention maps, respectively.
These are then reweighted onto the corresponding branch features
to achieve effective alignment and interaction. The process can be
expressed as follows:

𝑀𝑎𝑝𝑆 = 𝑓 (𝑃𝑊 (𝜑 (𝑃𝑊 (𝐹𝑆𝑃𝐶 )))), (8)
𝑀𝑎𝑝𝐶 = 𝑓 (𝑃𝑊 (𝜑 (𝑃𝑊 (𝐺𝐴𝑃 (𝐹𝑆𝑃𝑅))))), (9)
𝐹 = 𝐹𝑆𝑃𝑅 ⊙ 𝑀𝑎𝑝𝑆 + 𝐹𝑆𝑃𝐶 ⊙ 𝑀𝑎𝑝𝐶 . (10)

To leverage feature differences in the frequency domain and bridge
information gaps, we apply the Fast Fourier Transform (FFT) to the
fused feature 𝐹 . For simplicity, let us first consider a single-channel
case, 𝐹 ∈ R𝐻×𝑊 . The 2D Fast Fourier Transform of 𝐹 is defined as:

F (𝐹 ) (𝑢, 𝑣) = 1
√
𝐻𝑊

𝐻−1∑︁
ℎ=0

𝑊 −1∑︁
𝑤=0

𝐹 (ℎ,𝑤)𝑒− 𝑗2𝜋
(
𝑢ℎ
𝐻

+ 𝑣𝑤
𝑊

)
, (11)

where 𝑢 and 𝑣 denote the frequency coordinates in the transformed
space, and F −1 denotes the corresponding inverse transform (IFFT).
In our implementation, before applying FFT, the feature 𝐹 ∈
R𝐻×𝑊 ×𝐶 is first projected by a linear layer to amplify high-frequency
signals, acting as a high-pass filter [26, 38, 54]. We then use FFT to
decompose the feature into real and imaginary parts, (𝑅, 𝐼 ). Mathe-
matically, we have:

𝑅, 𝐼 = FFT
(
Linear(𝐹 )

)
, (12)

which produces a complex spectrum containing crucial global in-
formation. Next, these real and imaginary components are concate-
nated along the channel dimension:

𝐹 = IFFT
(
Linear( [𝑅, 𝐼 ])

)
, (13)

where [·] denotes channel concatenation, and 𝐹 is the frequency-
domain interaction-fused feature. This second linear layer further

modulates and refines the frequency components, while the inverse
FFT transforms them back to the spatial domain for subsequent
restoration stages.

3.5 Multi-Scale Flow Gating Network
Traditional feed-forward networks often rely on deep convolutions
to enhance the locality of latent features, but they tend to overlook
the effectiveness of multi-scale feature representation in removing
rain streaks [1, 6]. To address this, we combine a gating mechanism
with multi-scale representation learning by introducing convolu-
tions of different scales into both the gating and value branches
(see Fig. 2). This controls the flow of expert information across the
various levels of our pipeline, facilitating the flow of cross-level,
multi-scale information and effectively extracting multi-scale local
details. Given the input feature 𝐹 , the computation of MSGN can
be formulated as:

𝐹 = 𝑃𝑊 (𝐹 ), [𝐹1, 𝐹2] = 𝐹, (14)

𝐹 ′ = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝐷𝑊 3×3 (𝐹1) ⊙ 𝐷𝑊 5×5 (𝐹2)). (15)

4 Experiments
4.1 Experimental Settings
Implementation Details. In CPRAformer, {𝑁1, 𝑁2, 𝑁3, 𝑁4} are
set to {4, 6, 6, 8}, and the attention heads of the four levels of
CPRAformerB are set to {1, 2, 4, 8}. The initial channel 𝐶 is set
to 48. During training, we use the Adam optimizer with a patch size
of 64×64, a batch size of 12, and the number of epochs set to 300.
For detailed experimental settings, please refer to the supplements.
Data and Evaluation. We follow the majority of previous re-
search practices to train and validate our model [3, 12, 22, 67, 68].
Specifically, we use 13,712 image pairs collected from multiple
datasets [19, 32, 63, 72, 73] for training and evaluate the model
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Figure 7: The average fitting results of the Y channel his-
togram curve in the YCbCr space on the synthetic dataset, our
method produces results most similar to the ground truth.

Table 3: NIQE results under the real-world scenario [57].

Methods Input DRSformer [6] SFHformer [26] Nerd-rain [7] FSNet [12] CPRAformer

NIQE ↓ 5.923 5.814 5.745 5.711 5.667 5.556

Table 4: Ablation study of dual aggregation and dual para-
digm strategy.

Test100 Rain100H Average
SPC-SA SPR-SA PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

" 27.62 0.868 28.90 0.866 30.66 0.903
" 27.40 0.866 29.01 0.864 30.91 0.900

" " 28.80 0.891 29.22 0.871 31.56 0.913

on five synthetic datasets (Test100 [73], Rain100H [63], Rain100L
[63], Test2800 [18], Test1200 [71]) and one real-world dataset [57].
The aforementioned datasets primarily target rain streak removal.
However, raindrops represent another form of contamination in
rain removal tasks. Therefore, we train and evaluate our model
on the Raindrop-A and Raindrop-B datasets [40]. Consistent with
existing methods [20, 24], we adopt PSNR and SSIM as evaluation
metrics for the aforementioned benchmarks, both calculated on the
Y channel (luminance) in the YCbCr color space.

4.2 Comparison with State-of-the-Art Methods
We compared CPRAformer with 22 image deraining methods: RES-
CAN [30], PreNet [44], SPDNet [65], PCNet [25], MPRNet [68],
HINet [3], ALformer [22], DANet [23], Uformer [59], NAFNet [2],
MFDNet[56], HCT-FFN [8], DRSformer [6], FSNet [12], ChaIR [11],
OKNet [13], AST [76], SFHformer [26], IRNeXT [14], Nerd-rain [7],
MSDT [1] and AdaIR [15]. To ensure a fair comparison, we retrained
all the above methods from scratch in our environment using their
official source codes without any pretraining or fine-tuning.
Rain Streak Synthetic Datasets. Table 1 presents the quantitative
evaluation results on five benchmark datasets, where it is evident
that our CPRAformer consistently and significantly outperforms
existing methods. Specifically, compared to the most recent top-
performing method, AdaIR [15], CPRAformer improves the aver-
age performance across all datasets by 0.52dB. On certain datasets
(such as Test100), the gain reaches up to 1.01dB. Fig. 4 shows a
comparison of the visual quality of samples generated by recent
methods. Thanks to the interaction and fusion of dual paradigms,

(a) (b)

Figure 8: Ablation study of EPGO.

Table 5: Ablation study of AAFM.
Test100 Rain100H Average

Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

baseline 28.80 0.891 29.22 0.871 31.56 0.913
w/ stage1 28.78 0.892 29.68 0.873 31.68 0.913
w/ stage2 29.65 0.895 29.68 0.875 31.97 0.916

Table 6: Ablation study of MSGN.
Test100 Rain100H Average

Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

SFFN [17] 27.20 0.864 28.51 0.862 31.01 0.905
DFN [33] 29.45 0.893 29.66 0.872 31.58 0.913
ConvGLU [45] 28.33 0.891 29.26 0.870 31.46 0.911
MSGN 29.65 0.895 29.68 0.875 31.97 0.916

CPRAformer effectively removes rain streaks while preserving de-
tails and realistic textures in the background image. Additionally,
we provide a comparison of the “Y" channel histogram fitting curves
in Fig. 7, confirming the consistency of the deraining results with
the ground truth in statistical distribution.
Raindrops Synthetic Datasets. We conducted further experi-
ments on the raindrop datasets [40], and the quantitative results
are shown in Table 2, where our model achieved the highest per-
formance. Visual comparisons in Fig 5 indicate that our method
effectively removes raindrops while preserving fine texture details.
This demonstrates that our model attains optimal performance
under both types of rain contamination, further confirming the
generalization capability of our CPRAformer.
Real-world Datasets. To further demonstrate the generalization
and robustness of CPRAformer, we conducted comparisons on real-
world datasets [57]. As shown in Fig. 6, all other methods produced
suboptimal results in either rain removal or detail restoration.
In contrast, our proposed CPRAformer outperformed the other
methods, achieving visually pleasing restoration in challenging
examples. This indicates that CPRAformer can generalize well to
unseen real-world data types.
Perceptual quality assessment.We followed the method in [6,
76] to evaluate the perceptual quality of our proposed CPRAformer.
The results, shown in Table 3, demonstrate that CPRAformer achieves
a lower NIQE compared to other methods, indicating it delivers
better perceptual quality in real rain scenes.

4.3 Ablation Studies
In this section, we conduct ablation experiments on five synthetic
datasets to investigate the effect of each component. To ensure
fair comparison, all ablation studies are performed under the same
environment and training details. Due to space limits, we present re-
sults for two datasets along with the average across all five datasets.
Further ablation experiments are provided in the supplements.
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Figure 9: The qualitative comparison on hazy images. Our result has the best visual quality and details.

Table 7: Quantitative comparisons of state-of-the-art meth-
ods on the REIDE-6K [28, 46] and Haze4K [35] datasets. Bold
and underlined indicate the best and second-best results.

RESIDE-6K [28] Haze4K [35]
Method Year PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

MSBDN [16] CVPR2020 25.07 0.896 25.74 0.918
FFA-Net [41] AAAI2020 24.44 0.925 27.38 0.942
UHD [75] CVPR2021 25.68 0.913 25.40 0.918
Uformer [59] CVPR2022 26.29 0.925 26.43 0.937
gUNet [47] Arxiv2022 25.67 0.924 26.50 0.940
LKD [37] ICME2023 25.42 0.925 27.39 0.938
Dehazeformer [46] TIP2023 26.25 0.931 27.45 0.946
MB-TaylorFormer [42] ICCV2023 26.28 0.923 26.34 0.933
MixDehazeNet [36] IJCNN2024 26.62 0.939 27.34 0.945
DEANet [9] TIP2024 26.61 0.932 26.94 0.942
SFHformer [26] ECCV2024 27.08 0.940 26.92 0.941

CPRAformer (Ours) – 27.70 0.944 27.97 0.952

Dual Aggregation and Dual Paradigm Strategy. To investigate
the effect of using both SPC-SA and SPR-SA simultaneously, we
conducted multiple experiments, with results shown in Table 4.
The first and second rows of the table indicate that we replaced all
attention modules in CPRAformer with either SPC-SA or SPR-SA.
The third row represents the scenario where both attention mecha-
nisms are used in CPRAformer. Additionally, none of the models
employed AAFM in this comparison. We observe that the best per-
formance of 31.56 dB is achieved when both types of self-attention
are utilized. This indicates that the different representations of the
two paradigms are crucial for high-quality image deraining.
Efficient Prompt Guide Operator. To verify the effectiveness
of EPGO, we first removed the Top-k mechanism and EPGO itself,
with experimental results shown in Fig. 8 (a). It is observed that
EPGO consistently achieves high-fidelity recovery with excellent
PSNR performance. The key aspect of EPGO is to generate dynamic
k values through prompt information, guiding the attention matrix
to filter out important information. To this end, we tested on five
datasets, comparing the dynamic k values generated by EPGO with
fixed k values, with average results shown in Fig. 8 (b). The dynamic
k values adaptively handle the complex and variable rain streaks in
real scenarios, enhancing the model’s robustness.
Adaptive Alignment Frequency Module.We validated the effec-
tiveness of the AAFM through comprehensive ablation experiments,
with results shown in Table 5. Specifically, we used the model from
the third row of Table 4 as the baseline. First, we introduced the first
alignment stage of AAFM, which achieved a gain of 0.12 dB. Subse-
quently, we added the second fusion stage, resulting in a gain of
0.41 dB compared to the baseline model. This indicates that AAFM
maximizes the feature advantages of both paradigms, facilitating
high-frequency interactions and deep fusion of information.
Multi-Scale Flow Gating Network. To validate the effectiveness
of MSGN, we replaced it with Standard Feed-Forward Network

HCT-FFN Nerd-rain MSDT

FSNet Ours GT

Figure 10: Semantic segmentation results on Deeplab V3 [4].

(SFFN) [17], Depth-wise Convolution Equipped Feed-Forward Net-
work (DFN) [33], and Convolutional Gated Linear Unit (ConvGLU)
[45]. The results in Table 6 indicate that MSGN achieves optimal per-
formance by effectively representing latent multi-scale perceptual
information and enhancing information flow between classes.

4.4 Other Related Tasks
We selected image dehazing to validate the extensibility and robust-
ness of CPRAformer in image restoration tasks. Following most
previous studies [9, 36, 46, 47], we trained and validated our model.
Specifically, we used two popular dehazing datasets, RESIDE-6K
[28, 46] and Haze-4K [35], and compared CPRAformer with 11 state-
of-the-art dehazingmethods. Quantitative results, as shown in Table
7, indicate that CPRAformer achieved the best performance on both
datasets. For example, on RESIDE-6K, CPRAformer improved PSNR
by 0.62 dB over the previous SOTA method SFHformer, which is a
significant enhancement. Furthermore, visual comparisons in Fig. 9
reveal that other methods produce images with unnatural shadows
and high-frequency regions, as well as residual haze. In contrast,
CPRAformer restores clear images, preserves texture and color
details, and minimizes haze remnants. Additionally, we evaluated
CPRAformer on downstream tasks. For semantic segmentation,
a pre-trained DeepLab v3 [4] was used, and as shown in Fig. 10,
CPRAformer’s output is closest to the ground truth. Further details
on the downstream tasks are provided in the supplements.

5 Conclusion
In this paper, we propose a novel image deraining Transformer
model, CPRAformer, based on dual-paradigm representation learn-
ing. Specifically, we introduce SPC-SA, which adaptively adjusts
the sparsity of the neural network, enhancing global modeling ca-
pability while facilitating the flow of expert information across
channels. Additionally, SPR-SA emphasizes the spatial distribution
of rain variations, focusing on local feature extraction. Further-
more, we propose AAFM andMSGN to fully integrate features from
both paradigms, promoting interaction between different types of
representations and achieving cross-scale feature interaction. Ex-
tensive experiments on 10 benchmark datasets demonstrate that
CPRAformer exhibits strong generalization and robustness.
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