
4202 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024

HAFormer: Unleashing the Power of
Hierarchy-Aware Features for Lightweight

Semantic Segmentation
Guoan Xu , Wenjing Jia , Member, IEEE, Tao Wu, Ligeng Chen, and Guangwei Gao , Senior Member, IEEE

Abstract— Both Convolutional Neural Networks (CNNs) and
Transformers have shown great success in semantic segmentation
tasks. Efforts have been made to integrate CNNs with
Transformer models to capture both local and global context
interactions. However, there is still room for enhancement,
particularly when considering constraints on computational
resources. In this paper, we introduce HAFormer, a model
that combines the hierarchical features extraction ability
of CNNs with the global dependency modeling capability
of Transformers to tackle lightweight semantic segmentation
challenges. Specifically, we design a Hierarchy-Aware Pixel-
Excitation (HAPE) module for adaptive multi-scale local feature
extraction. During the global perception modeling, we devise an
Efficient Transformer (ET) module streamlining the quadratic
calculations associated with traditional Transformers. Moreover,
a correlation-weighted Fusion (cwF) module selectively merges
diverse feature representations, significantly enhancing predictive
accuracy. HAFormer achieves high performance with minimal
computational overhead and compact model size, achieving
74.2% mIoU on Cityscapes and 71.1% mIoU on CamVid
test datasets, with frame rates of 105FPS and 118FPS on
a single 2080Ti GPU. The source codes are available at
https://github.com/XU-GITHUB-curry/HAFormer.

Index Terms— Semantic segmentation, lightweight, multi-scale
feature extraction, local and global context.

I. INTRODUCTION

SEMANTIC segmentation involves the task of assigning
a label to each pixel in a given image, making it a
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Fig. 1. Visual comparison of small object segmentation using our approach
versus an existing method on sample images from Cityscapes (top) and
CamVid (bottom).

fundamental dense prediction task in computer vision with
applications in autonomous driving [1], medical care [2],
satellite remote sensing [3], and more. Previous methods, such
as [4] and [5], leverage deep convolutional neural networks
(CNNs) for feature extraction, incorporating feature pyramid
structures for multi-scale information perception [6] and
attention modules for global context perception [7], [8], [9].
Although these methods have achieved considerable accuracy,
they often require extensive computational resources and
exhibit relatively slow inference speeds due to deep network
stacking for larger receptive fields and higher semantic levels.

To accommodate devices with limited computational
resources, recent studies [10], [11], [12], [13], [14] have
focused on developing lightweight segmentation models. For
example, ERFNet [11] employs 1D non-bottleneck modules
to reduce computation, while ICNet [13] utilizes inputs
of varying resolutions to enhance information flow across
different branches. FBSNet [15] uses a symmetrical encoder-
decoder structure with a spatial detail branch and a semantic
information branch to refine contextual details. Typically,
these models simplify the base module structures to minimize
computational costs. However, while enhancing computational
efficiency, their segmentation accuracy is often compromised
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due to the local limitations of convolution networks and
shallower network depths.

Transformers have recently demonstrated remarkable suc-
cess in various computer vision communities [16], [17].
Drawing inspiration from this progress, researchers have
started integrating ViT [18] architectures to tackle semantic
segmentation challenges. Unlike CNNs, Transformers inher-
ently provide a broad global receptive field through their
extensive global attention mechanisms. Models using Trans-
formers as image encoders excel in global context modeling,
leading to significant improvements in segmentation accuracy
compared to CNN-based approaches. While UNETR [19] and
other methods [20], [21] base predictions on the last layer of
the Transformer encoder, they tend to overlook smaller-scale
objects in images, affecting the precise classification of smaller
elements or pixels, as depicted in Fig. 1. SegFormer [22]
introduces a hierarchical attention model integrating a
hierarchical Transformer encoder and a lightweight multi-
layer perceptron (MLP) decoder to enhance segmentation
precision. MPViT [23] effectively incorporates multi-scale
feature inputs into Transformer operations, yielding impressive
results.

These methods prioritize high segmentation accuracy but
often overlook model efficiency. Firstly, transformer-based
approaches lack inductive bias, making their training slow and
challenging to converge. In addition, they typically require
larger datasets and extended training duration, resulting in
significant training overhead. Secondly, slow inference speeds
are attributed to the time-consuming multi-head self-attention
(MHSA) operations. The computational burden escalates,
especially with high-resolution inputs, due to the quadratic
complexity of MHSA. Additionally, these methods may
struggle with capturing details and small objects due to their
limited fine local modeling capabilities.

In this work, our goal is to develop a lightweight
semantic segmentation model that leverages both CNNs
and Transformers, focusing on minimizing model size and
computational requirements. Introducing the “HAFormer”
model, we combine the global receptive capabilities of
Transformers with the local perception strengths of CNNs to
unleash the power of hierarchy-aware features.

The core contributions of this paper are threefold:

• We propose a novel Hierarchy-Aware Pixel-Excitation
(HAPE) module, utilizing hierarchy and content-aware
attention mechanisms to reduce the computational
load while enabling the extraction of deeper semantic
information from pixels under various receptive fields.

• We develop an effective feature fusion mechanism, named
correlation-weighted Fusion (cwF), to synergistically
integrate the local and global context features learned by
CNNs and Transformers, effectively enhancing accuracy.
We propose an Efficient Transformer to decompose Q, K ,
and V matrices, which effectively addresses the quadratic
computational complexity challenge present in traditional
Transformer models.

Extensive experiments conducted on two widely used
benchmarks demonstrate that our HAFormer achieves a
balance between segmentation accuracy and efficiency.

The remainder of this paper is structured as follows:
Section II provides a comprehensive review of related works.
Section III presents the details of our proposed HAFormer,
focusing on its three key components. Section IV describes
the detailed experimental setting and presents the evaluation
results, including ablation studies and discussions. Finally,
Section V concludes the paper by summarizing the key
findings and discussing future directions.

II. RELATED WORK

A. Hierarchical Methods in Semantic Segmentation

In dense prediction tasks, accurately classifying multi-
scale and small target objects is a common challenge. This
is particularly evident in semantic segmentation, where the
classification of small objects can be affected by neighboring
larger objects, leading to misclassification. Hierarchical meth-
ods effectively address this challenge by utilizing convolutions
with varying dilation rates or pooling layers with different
rates. The outcomes are then cascaded or concatenated
to integrate information from diverse scales. This multi-
scale integration enhances receptive field levels, mitigating
ambiguity from varying local region sizes and improving
object detail handling. Existing hierarchical approaches [6],
[13], [14], [22], [24], [25] can be classified into overall
hierarchical structures or specific hierarchical modules,
summarized as follows:

1) Hierarchical Structures: Several approaches have
adopted a multi-scale design, featuring distinct network
branches handling inputs or feature maps of varying
resolutions. A notable method following this approach is
ICNet [13], which incorporates three encoding branches
(low-resolution, medium-resolution, and high-resolution), each
excelling at extracting fine-grained information at different
scales to enhance boundary information in the output.
In contrast, HRFormer [24] effectively combines robust
semantic information with precise location details. Whereas
HSSN [26] is a hierarchical approach, focusing on categorizing
objects like “Human-Rider-Bicyclist” rather than addressing
pixel-level classification challenges for small objects. Other
methods, including [14], [22], [25], [27], utilize multi-scale
structures by parallelizing multiple resolution branches and
facilitating continuous information interaction among them.

2) Hierarchical Modules: Numerous methods integrate
hierarchical modules at specific layers within the architecture,
allowing the utilization of varied receptive fields on feature
maps. For example, the ASPP module used in DeepLab [28],
[29] and DenseASPP [6] effectively extracts features from
different scales through atrous convolutions, addressing
the variability in object scales within and across images.
PSPNet [30] stands out for its pyramid pooling module that
integrates features from four scales. By collecting and merging
contextual information from diverse scales, this module
generates more representative and discriminative features
than those from global pooling alone. Models using this
module can enhance their recognition capability for objects
of various sizes. Inspired by the “wider” modules [30], [31],
in this work we demonstrate that utilizing multiple diverse
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convolution kernels efficiently enhances expressive capacity,
leading to improved performance with minimal computational
and parameter overhead.

B. Vision Transformer in Semantic Segmentation

The groundbreaking ViT [18] introduces a pure transformer
framework for image recognition, treating images as sequences
of patches processed through multiple layers. Subsequent
models such as DeiT [32], Fact [33], CrossFormer [34],
and DViT [35] have further excelled in image processing
tasks. SETR [16] is a tailored paradigm for segmentation,
utilizing a pure Transformer model in the encoder and various
CNN decoder combinations to achieve state-of-the-art results.
Swin-Transformer [17] addresses redundant computations,
easing computational loads to some extent. However, these
methods still require extensive training data to match CNN
performance, posing challenges in dense prediction fields
requiring detailed annotations. Transformer-based models such
as [23] and [27] have recognized the importance of hierarchical
perceptions in dense prediction tasks, incorporating multi-scale
structures and pyramid modules in their designs.

Recent studies have noted that Transformers often prioritize
global long-range dependencies, potentially overlooking crit-
ical features like local connections and translation invariance
characteristic of CNNs. Consequently, various methods [2],
[36], [37], [38] have sought to combine CNNs and Trans-
formers to fully leverage the strengths of both. However, these
efforts struggle to balance real-time inference requirements
and low-latency capabilities. Lightweight techniques such as
LETNet [39] position the Transformer as a capsule network
while others, such as TopFormer [40], integrate it as an
auxiliary component in the decoder to enhance boundary
recovery. Nonetheless, a definitive solution for effectively
combining global and local information remains elusive.

To tackle the challenges of high computational requirements
and effectively integrating local information with a global
context when combining CNNs with Transformers, our
HAFormer introduces an Efficient Transformer (ET) module to
manage computational complexity and a correlation-weighted
Fusion (cwF) mechanism to harmonize features from CNNs
and Transformers.

C. Attention Mechanisms in Semantic Segmentation

Inspired by the focal nature of human visual perception,
attention mechanisms emphasize significant features while
disregarding irrelevant ones. These mechanisms fall into
two main categories: channel attention and spatial attention.
In channel attention methods, SKNet [41] enables neurons to
dynamically adjust their receptive field sizes based on input
scales. Spatial attention methods, such as non-local neural
networks [8], capture long-range dependencies in semantic
segmentation. However, modeling relationships between all
locations can be computationally intensive. Asymmetric non-
local neural networks [9] attempted to reduce computational
costs, yet they may still be resource-intensive, especially with
high-resolution input features.

Researchers have explored combining both channel and
spatial attention mechanisms to enhance features from multiple
perspectives. For instance, CBAM [7] sequentially operates
along two independent dimensions (channel and spatial),
producing attention maps that are then multiplied with
input features for adaptive feature optimization. DANet [4]
and CCNet [42] integrate channel and spatial attention in
parallel, employing self-attention operations and combining
the resulting features. CAA [43] disassembles axial attention
and integrated channel attention to manage conflicts and
prioritize features. These methods, utilizing self-attention
mechanisms, have demonstrated positive results.

A prevalent challenge involves pixel-wise long-distance
modeling, which incurs high computational costs, rendering it
unsuitable for deployment in resource-constrained scenarios.
This study introduces a lightweight model that optimizes the
local perception of CNNs and the global modeling abilities
of Transformers. We address the computational complexity
issue by utilizing a spatial reduction-linear projection and split
operation strategy within our proposed Efficient Transformer
(ET) module.

III. THE PROPOSED METHOD

A. Overall Architecture

The overall architecture of our HAFormer is illustrated in
Fig. 2, which features three components: a CNN encoder
enhanced with hierarchy-aware pixel excitation, an efficient
Transformer encoder, and a lightweight decoder.

For a given input image I ∈ R3×H×W with dimensions
of H × W , the model begins with a CNN Encoder,
producing features F ∈ RC f ×H f ×W f

(
H f =

H
8 , W f =

W
8

)
.

Simultaneously, the input I undergoes processing in
the Transformer encoder post the Transformer Stem
block, resulting in feature embedding T ∈ RN×D , where
N =

Ht
P ×

Wt
P

(
Ht =

H
16 , Wt =

W
16

)
denotes the token count,

D = Ct × P2 denotes the dimension of each token, and P
signifies token size. Subsequently, the two distinct types
of context features, F and T , are synergized effectively
by our newly designed correlation-weighted Fusion (cwF)
module. This fusion of correlated CNN and Transformer
features enhances boundary information and restoration with
the lightweight decoder segmentation head.

Specifically, to optimize the CNN encoder, we employ
three 3 × 3 convolutional layers in the CNN Stem block.
In this configuration, the last layer has a stride of 2, resulting
in a feature map size of C1 ×

H
2 ×

W
2 , where C1 denotes

the output channel count. In contrast, the Transformer stem
in the Transformer Encoder reduces the resolution while
extracting feature representations, contributing to the model’s
lightweight design by minimizing computational load, since
higher resolution means more computation. Therefore, in the
Transformer Stem block, we employ four 3 × 3 convolution
layers with a stride of 2, resulting in an output feature size of
Ct ×

H
16 ×

W
16 .
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Fig. 2. The overall architecture of the proposed HAFormer. HAFormer introduces a Hierarchy-Aware Pixel-Excitation (HAPE) module for adaptive multi-scale
local feature extraction. For global perception modeling, HAFormer develops an efficient Transformer module to streamline the quadratic calculations.
Additionally, a correlation-weighted Fusion (cwF) module selectively combines diverse feature representations, markedly boosting predictive accuracy.

B. Hierarchy-Aware Pixel-Excitation (HAPE) Module

Employing convolutions with diverse kernel sizes within
the same layer, combined with pixel excitation, facilitates
feature extraction from objects of varying sizes. Building on
this concept and drawing inspiration from works like [30],
[44], we adopt a multi-scale strategy to capture unique pixel
features across different receptive field levels. Unlike the
layer-wise merging seen in ESPNet [12] and concatenation
in Inception [45], our module avoids redundant computations,
leading to a more streamlined network while preserving
feature effectiveness. Additionally, to further improve pixel
representation across diverse scales, we introduce the
innovative Hierarchy-Aware Pixel Excitation (HAPE) module
in this study. This module enhances the model’s ability to
effectively recognize objects of various sizes in an image,
ultimately reducing pixel misclassification rates.

Specifically, as depicted in Fig. 3, given a feature input
X in ∈ RNc×Hc×Wc , we initially feed it into a 1 × 1
convolutional layer to reduce its channel dimensions to Nc

4 ,

i.e., the output feature map
∼

X is denoted as
∼

X = f1×1 (X in) ,
∼

X ∈ R
Nc
4 ×Hc×Wc . (1)

Here, f1×1 denotes a convolution operation with a kernel size
of 1 × 1. This dimension reduction facilitates the channel
operation in the subsequent hierarchical convolutional layers.

Subsequently, we perform four parallel convolution oper-
ations, comprising factorized convolution and depthwise
separable convolution, with kernel sizes of 3, 3, 5, and 7,
respectively. Additionally, the last three convolutional layers
utilize dilated convolution to enhance receptive fields,
as shown in Fig. 4. This strategy enables the model to capture
image features across various scales, ensuring comprehensive
and detailed information extraction.

Fig. 3. The architecture of our Hierarchy-Aware Pixel-Excitation (HAPE).
DC stands for dilation convolution.

The above process is expressed as

l1 = f1×3

(
f3×1

(
∼

X
))

, (2)

li = f dc
1×ki

(
f dc
ki ×1

(
∼

X
))

, {ki = 3, 5, 7; i = 2, 3, 4} , (3)

where li represents the intermediate features, f1×ki is a 1D
convolution operation with a kernel size of ki , and dc denotes
the dilation rate. For simplicity, some activation and batch
normalization operations are excluded from the equations.

A critical element lies in the Pixel-Excitation Module
(PEM), which is responsible for enhancing the feature
representability through a content-aware spatial-attention
mechanism. As illustrated in Fig. 3, the process begins
by feeding the input x ∈ Rc×h×w into the Global Average
Pooling (GAP) layer, generating x1 ∈ R1×h×w. Subsequently,
x1 undergoes reshaping and flattening operations before being
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Fig. 4. Supplementary instructions of hierarchical respective fields for HAPE.

input to the Sof tmax function to calculate the weight matrix
A ∈ R1×h×w. This weight matrix is then multiplied with the
input features, resulting in a content-aware attention-enhanced
output x ′.

This process can be represented as

x1 = Reshape (GAP (x)) , (4)

A = Reshape−1 (Softmax (x1)) , (5)

and

x ′
= δ (x ⊙ A + x) . (6)

Here, Reshape and Reshape−1 denote the reshaping
operation and its reverse operation, δ is an activation function,
and ⊙ denotes element-wise multiplication.

Finally, a residual structure is employed to retain the original
features, yielding the final output Y ∈ RNc×Hc×Wc . The four
convolution layers are jointly added into a 1×1 convolution for
feature fusion and channel restoration. A residual connection
is maintained within the module, and the channel shuffle
operation effectively facilitates the information interaction
between channels, as expressed as

Y = Shuffle

(
f1×1

(
δ

( 4∑
i=1

PEM (li )

))
+ X in

)
, (7)

where Shu f f le represents the channel shuffle operation, and
δ is an activation function.

C. Efficient Transformer

Conventional Transformer methods, as evidenced by [17]
and [46], can be excessively large for lightweight and
real-time models, especially when handling high-resolution
inputs. This underscores the urgent need for more efficient
Transformers. Inspired by [31] and [47], our approach
focuses on reducing computational costs by diminishing
feature dimensions without significant loss of image details.
To achieve this, we introduce a spatial reduction linear
projection method which initially maps features into a latent
embedding space with reduced dimensions before employing
them for multi-head self-attention calculations. This approach,
known as efficient Multi-Head Self-Attention (eMHSA) with
learned projection and split operation, is depicted in Fig. 5.

Denote the input feature as X t ∈ RCt ×Ht ×Wt , where Ct ,
Ht , and Wt represent the number of the channel, height, and
width of the feature map, respectively. Following the Reshape
operation, a sequence of flattened non-overlapping patches is

derived, resulting in X t ∈ RN×
(
Ct ·P2)

, where N =
Ht Wt

P2

indicates the number of patches (i.e., the input sequence
length), with each patch size being P × P . Subsequently,
the patches are mapped by a learnable linear projection layer
E ∈ R

(
P2

·Ct
)
×D into a latent D dimensional embedding space,

denoted as Z ∈ RN×D . This process can be formulated as

Z =

[
x1

p E; x2
p E; . . . ; x N

p E
]
, (8)

where x i
p denotes the i-th patch. Note that the omission of

position embedding is intentional to allow greater adaptability
for different input sizes.

Subsequently, the three matrices in Transformers, namely
the queries Q, the keys K , and the values V are derived
through their linear projections W Q , W K , and W V

∈ RD×Dh .
This can be expressed as

Q, K , V = Z W Q, Z W K , Z W V
∈ RN×Dh . (9)

Moreover, the number of heads h in the multi-head self-
attention is also a user-defined parameter, ensuring each head’s
dimension equals d =

Dh
h . Consequently, the dimensions of

q , k, and v in the i-th head are N × d. In the i-th head, k
and v undergo spatial reduction by a factor of r , where r is
the reduction ratio and set to 2. Then, the sub-tokens resulting
from the feature split operation undergo matrix multiplication
with a field representing only 1

s of the original perception,
where s denotes the number of feature splits, which is set to
4. This process can be described as(

q1,...,qs
)
,
(
k1,...,ks

)
,
(
v1,...,vs

)
= Feature_Split (q, k, v) .

(10)

Therefore, the spatial distribution becomes qi ∈ RN×
d
s , ki ∈

R
N
r ×

d
s , and vi ∈ R

N
r ×

d
s . This idea shares similarities with

the concept of group convolution and can efficiently reduce
memory consumption. Thus, the self-attention in the n-th head
is calculated as

oi (qi , ki , vi ) = Softmax

(
qi (ki )

T
√

d

)
vi , i ∈ [1, s] , (11)

and

headn
= Concat[o1, o2, . . . , os], n ∈ [1, h] , (12)

where Concat[., .] denotes the concatenating operation.
Thus, the final output of the eMHSA is denoted as

eMHSA = Concat[head1, head2, . . . , headh
]W O , (13)

where h represents the number of heads in eMHSA, while
W O

∈ RDh×D serves as a linear projection to restore the
dimension. Hence, with the structure designed above, we have
reduced the complexity from O

(
N 2) to O

(
N 2

sr

)
.

It is noteworthy that the Transformer series [16], [17],
[23] also utilize a kind of self-attention mechanism, including
Multi-Head. However, their approach is computationally
intensive for capturing detailed relationships among features,
which deviates from our objectives.

As for the MLP layer, we follow the approach described
in [31] and [48], replacing fixed-size position encoding
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Fig. 5. The architecture of the proposed efficient Multi-Head Self-Attention (eMHSA).

Fig. 6. The architecture of the correlation-weighted Fusion (cwF) module.

Fig. 7. The architecture of the baseline model (a), the detailed illustration of the Residual Module (RM) used in the baseline (b), and the Hierarchical
Module (HM) in our proposed HAPE module (c).

with zero-padding position encoding. Moreover, we introduce
a depth-wise convolution with a padding size of 1 to
capture local continuity in the input tensor between the fully
connected (FC) layer and GELU in the feed-forward networks.
By eliminating fixed-size positional embeddings, the model
becomes versatile in handling inputs with different resolutions.
Thus, the output of the efficient MLP layer, denoted as
“eM L P ,” can be written as

eMLP = ρ (ξGELU ( fDWConv (ρ (xe)))) , (14)

where ρ denotes the FC layer operation, ξGELU represents
the GELU activation function, fDWConv signifies depthwise
convolution, and xe is the input of eMLP.

D. Correlation-Weighted Fusion

Numerous studies, such as [2], [36], [40], and [46], have
explored integrating features from both Transformers and
CNNs. For example, SegTransConv [36] introduces a hybrid
architecture combining Transformers and CNNs in series
and parallel, yet it does not fully exploit the collaborative
potential of both. Given the distinct characteristics and compu-
tational mechanisms of Transformers and CNNs, conventional
element-wise addition or concatenation operations may not
yield optimal results. A design leveraging the complementary
strengths of both is therefore crucial for maximizing the
representability of the extracted features and facilitating
information recovery during decoding.

In this paper, we introduce an effective strategy to bridge
this gap. Our approach seamlessly combines the distinct
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TABLE I
ABLATION STUDIES ON THE HM AND PEM COMPONENTS OF THE PRO-

POSED HAPE MODULE.Cit., Cam., AND Param. DENOTE CITYSCAPES,
CAMVID, AND PARAMETER, RESPECTIVELY

types of features extracted by Transformers and CNNs
through correlation-weighted integration. By fusing CNN and
Transformer features with high correlation, we develop a new
correlation-weighted Fusion (cwF) module.

As depicted in Fig. 6, T and F denote intermediate features
from the Transformer and CNNs, respectively. Initially, the
Transformer feature T is reshaped to match the same shape
of the CNN feature F , which is followed by the post-
concatenation operation of the two feature sets. To reduce
the computational costs, depthwise separable convolution is
employed for channel dimensional reduction. Subsequent to
GAP and Sigmoid operations, a correlation coefficient matrix,
denoted by M , is calculated. This matrix is then multiplied
with the original features to obtain

∼

F and
∼

T , which are added
together to produce the final output Z .

This process can be expressed as

G = Concat[Reshape (T |F) , F], (15)

where G ∈ RCg×Hg×Wg
(
Cg = C f + Ct

)
), Concat represents

the concatenating operation, and a|b represents the feature
map of the size a being restored to size b. Then, the correlation
coefficient matrix M can be computed as

M = δ ( f1×1 (GAP ( f1×1 ( f3×3 (G))))) , (16)

where M ∈ RCm×1×1, δ is the Sigmoid function, G AP
represents global average pooling operation, and fk1×k2

denotes convolutional operation with a kernel size of k1 × k2.
Thus, the resultant cwF features, denoted by ZcwF, can be

expressed as

ZcwF = ϕ
(

∼

T +
∼

F
)

,
{

∼

T = T ⊙ M,
∼

F = F ⊙ M
}

, (17)

where ZcwF ∈ RCz×Hz×Wz , ϕ is the ReLU activation function,
and ⊙ represents element-wise multiplication.

It is noteworthy that feature correlation has also been
explored in CTCNet [38], where the correlation between the
features derived from Transformers and CNNs is calculated.
However, in CTCNet, the module merely concatenates the
correlation with the Transformer and CNN features, which
cannot effectively align these two types of features, potentially
leading to performance degradation due to feature mismatch.

IV. EXPERIMENTS

To demonstrate the effectiveness of our HAFormer
and its individual modules qualitatively and quantitatively,
comparative experiments are conducted on benchmark datasets

Fig. 8. Performance comparisons using different numbers of ETs with the
baseline RM module, HM module, and our HAPE module obtained on the
CamVid dataset.

TABLE II
ABLATION STUDIES ON THE IMPACT OF DILATION RATES

TABLE III
PERFORMANCE COMPARISON BETWEEN USING TT AND ET IN HAPE ON

THE CITYSCAPES (512 × 1024) AND CAMVID (360 × 480) DATASETS

and compared with state-of-the-art (SOTA) approaches.
In this section, we first outline the datasets, loss functions,
hardware platform configuration, and parameter settings used
in our experiments. Then, we present the series of ablation
experiments conducted to validate the effectiveness of the
individual modules. Finally, comparative experiments are
conducted to demonstrate the superiority of our approach over
the SOTA approaches.

A. Datasets

Our HAFormer model is designed to tackle challenges
related to scale variations and contextual information in street
scenes. The Cityscapes [49] and CamVid [50] datasets are
two prominent benchmarks widely utilized in street scene
segmentation research. Hence, to showcase the efficacy of
our model, we conducted a series of comprehensive empirical
evaluations on these two datasets.

1) Cityscapes: This dataset comprises 5,000 high-quality
images annotated at the pixel level. Captured from various
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urban settings in 50 cities, these images have a resolution
of 2, 048 × 1, 024 and primarily depict driving scenes. The
dataset is divided into three subsets: 2,975 images for training,
500 for validation, and 1,525 for testing. While the dataset
includes labels for 34 categories, our study focuses specifically
on 19 essential semantic categories. We utilize the Cityscapes’
built-in tools to adjust the labels to suit our research needs.

2) CamVid: This is a public dataset of urban road scenes
released by the University of Cambridge. The images, with
a resolution of 960 × 720, are captured from a driving
perspective, increasing the diversity of observed targets.
With over 700 labeled images, the dataset is suitable for
supervised learning. The CamVid dataset usually employs
11 common categories for evaluating segmentation accuracy.
These categories offer a thorough representation of objects
in urban road scenes, making them a valuable resource for
research.

B. Implementation Details

The HAFormer model is executed on a single RTX 2080 Ti
GPU card with 12GB memory, using CUDA 10.1 and PyTorch
1.8.1. The architecture is trained from scratch without any
pre-trained models. We employ Stochastic Gradient Descent
(SGD) with a momentum of 0.9 and a weight decay of 1e−5,
along with the “Poly” learning rate policy for optimization.

For Cityscapes, the initial learning rate is 4.5e − 2, and the
batch size is set to 5 to maximize GPU memory usage. For
CamVid, the initial learning rate is 1e−3, with a batch size of
8. Following the existing practice, we apply data augmentation
techniques including horizontal flipping, random scaling, and
random cropping to introduce diversity in the training data,
with random scales ranging from 0.25 to 2.0 and the cropping
size of 512×1024 for Cityscapes over 1,000 epochs. No post-
processing is applied for a fair comparison.

Finally, following the existing practice, the performance is
quantitatively evaluated using the averaged mean Intersection-
over-Union (mIoU) across all categories, as well as the
parameter counts, FLOPs and GPU usage, and processing
speed.

C. Ablation Studies

In this part, we conduct a series of ablation experiments to
validate the effectiveness of each module in our method.

1) Ablation Study of the HAPE Module: In our HAPE
module (see Section III-B), we proposed four parallel
convolution operations to capture image features across
various hierarchies comprehensively. This is then followed
by the PEM, designed to enhance the feature representability
through a content-aware spatial-attention mechanism. In this
section, we show the effectiveness of the hierarchical approach
(denoted as “HM”) and the PEM approach of our HAPE
module, respectively.

The baseline model used for comparison is structured
as a single-line type (as shown in Fig. 7), incorporating
the standard Residual Modules (RMs). To showcase the
performance gains brought by the HM and PEM, we first
substitute the RM of the baseline model with the HM module,

TABLE IV
ABLATION STUDIES OF THE ET, THE NUMBER OF ETS IN HAPE (“L”),

AND THE CWF MODULE ON THE CITYSCAPES DATASET

omitting the PEM part, and then include both the HM and
PEM modules to test the effectiveness of the entire HAPE
module.

Table I highlights the superior performance of the HM,
showcasing mIoU gains of 1.47% and 1.53% over the RM.
The HM excels in extracting robust features, facilitating
deep semantic information extraction effectively. Moreover,
the multi-scale structure significantly enhances the model’s
performance in feature extraction and small object recognition.
Introducing the PEM further enhances segmentation accuracy
by 2.13% and 2.74% on both datasets.

Throughout this experiment, the dilated convolution rates
are set to 1 in both HM and HAPE to ensure a fair comparison.
Fig. 8 also verifies the efficacy of our HAPE module when
being integrated with the Transformer module.

2) Ablation Study of the Dilation Rates: In this section,
we explore how the chosen dilation rates impact segmentation
performance. With a consistent number of modules, a larger
dilation rate expands the receptive field, allowing the model
to perceive a broader scope, and hence is essential for
comprehensive feature extraction.

Results shown in Table II reveal that transitioning the
dilation rate from all 1s to all 2s (the first two rows) in
dilated convolution boosts mIoU by about 0.5%. Further,
by progressively increasing the dilated convolution rate in
Stages 2 and 3, we observe performance enhancements of
1.21% and 1.73% on the two datasets. Hence, to preserve
spatial details, in our approach, we allocate three modules
in Stages 1 and 4 while employing six modules in Stages
2 and 3 to capture intricate semantic information within
the network’s depth. This strategy optimizes calculations for
the transformer encoder, improving long-range dependency
modeling.

3) Ablation Study of the Efficient Transformer: As detailed
in Section III-C, another key contribution we made in the
HAFormer is the Efficient Transformer (ET) module, which
reduces the dimension of features by projecting them into
an optimal latent embedding space before calculating self-
attention. Table III showcases the performance gains brought
by the ET module over the traditional Transformer (denoted
as “TT”) in terms of segmentation accuracy and computation
complexity on Cityscapes and CamVid datasets.
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Fig. 9. Visual results on Cityscapes dataset. From left to right: original images, ground truths, predictions of HAFormer, LETNet [39], SGCPNet [51],
DABNet [52], CGNet [53]. Note that two examples are shown. In each group, the first row visualizes the overall segmentation results, while the second row
visualizes the zoom-in of the small areas enclosed in rectangles.

TABLE V
COMPARISONS ON THE CITYSCAPES TEST DATASET. “∗” INDICATES THAT THE METHOD UTILIZES MULTIPLE GRAPHICS CARDS.

“−” MEANS THAT THE RESULT IS NOT PROVIDED IN THE CORRESPONDING METHODOLOGY

As shown in Table III, the ET design demonstrates a
superior balance between efficiency and accuracy. Compared
to the traditional Transformer “TT”, ET achieves an 18%
reduction in parameter count and a 17% decrease in
computational load, with only a slight mIoU loss of 0.4%.
This results in a more efficient model with minimal impact
on performance, and it even offers faster inference speed.
In addition, the results in Table IV also reveal the significant
enhancement upon integrating features learned through the

Transformer, with a remarkable 2.16% boost in mIoU. This
underscores the Transformer’s exceptional ability to capture
long-range dependencies, a feature that the CNN alone cannot
achieve.

Additionally, in the proposed HAFormer, the number of ET
layers L is deliberately limited to 2, considering computation
hardware constraints and also aiming to achieve the best
balance under constraints. Although stacking more ET layers
could yield better accuracy results, as shown in Fig. 8,
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TABLE VI
COMPARISONS WITH OTHER METHODS ABOUT PER-CLASS RESULTS ON THE CITYSCAPES TEST SET. ROA: ROAD, SID: SIDEWALK, BUI: BUILDING,

WAL: WALL, FEN: FENCE, POL: POLE, TLI: TRAFFIC LIGHT, TSI: TRAFFIC SIGN, VEG: VEGTATION, TER: TERRAIN, SKY: SKY, PED:
PEDESTRAIN, RID: RIDER, CAR: CAR, TRU: TRUCK, MOT: MOTORCYCLE, BIC: BICYCLE

Fig. 10. Visual results obtained on the CamVid dataset. From left to right: original images, ground truths, predictions obtained with HAFormer, LETNet [39],
SGCPNet [51], DABNet [52], DFANet [25]. Next to each prediction result is a partially enlarged detail map.

the performance gains slow down dramatically when L is
greater than 2. Moreover, adding excessive ET layers on a
high-resolution dataset like Cityscapes may negatively impact
parameters, computations, and inference speed, potentially
causing overfitting.

4) Ablation Study of the Correlation-Weighted Fusion:
To address the feature mismatch issue between CNNs and
Transformers and ensure effective feature restoration during
decoding, in Section III-D we introduced the cwF mechanism.
Table IV compares the results obtained with our cwF method
and two other fusion techniques, i.e., element-wise addition,
and concatenation. The table illustrates enhanced segmentation
accuracy when integrating CNN and Transformer features
using all three fusion methods. Notably, our cwF achieves a
performance improvement of 2.38% over the baseline with one
ET layer and 4.06% gain with two layers stacked.

Moreover, from Table IV we observe that (a) Compared
to the simple element-wise addition fusion scheme, our
cwF shows performance gains of 1.27% and 1.90% in the
two cases with only a slight increase in parameter count
and FLOPs; (b) Our cwF presents mIoU gains of 0.84%
and 1.01% over the computationally expensive concatenation
operation, respectively, while achieving about 5% reduction
in parameter count and 15% decrease in computational
load. These experimental outcomes further demonstrate the
effectiveness of our cwF.

D. Comparisons With SOTA Methods

In this section, we extensively assess and compare the
performance and efficiency of our method against some state-

of-the-art approaches to showcase the advantages of our
proposed method. Our evaluation centers on three key aspects:
segmentation accuracy, model parameters, and floating-point
operations (FLOPs).

1) Evaluation Results on Cityscapes: Quantitative com-
parisons with advanced semantic segmentation methods on
the Cityscapes test set are presented in Table V. Per-class
results are detailed in Table VI, and visualization outcomes
are displayed in Fig. 9. To ensure fairness, no augmentation
techniques are used during testing, and data for other networks
are referenced from pertinent sources. Contemporary semantic
segmentation models fall into two main categories: those
emphasizing larger size and higher precision, and those
prioritizing real-time practicality with a balance between
accuracy and efficiency.

While larger models achieve high accuracy, their FLOPs and
speed lag behind lightweight models, making them unsuitable
for real-time processing on devices with limited resources.
In contrast, lightweight models like ENet [10], ESPNet [12],
CGNet [53], and FPENet [59] are computationally efficient.
Despite their reduced parameter count, their overall perfor-
mance, especially in accuracy, is lacking. In terms of accuracy,
EFRNet-16 [66] shows similarities to our results. However,
it is noteworthy that its parameter count and GFlops are
2 times greater than ours. Apparently, our model requires fewer
parameters and computations, highlighting the efficiency of
our approach.

2) Evaluation Results on CamVid: To further validate
the effectiveness and generalization capacity of our model,
we compared it with other lightweight methods on the CamVid
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TABLE VII
COMPARISONS ON THE CAMVID TEST DATASET

TABLE VIII
COMPARISONS OF RUN-TIME AND INFERENCE SPEED OF THE

PROPOSED HAFORMER WITH OTHER APPROACHES

dataset, as shown in Table VII. While MGSeg [64] excels
in accuracy, surpassing our method by 1.6 points, it does
so at the cost of having 22 times more parameters than
ours, indicating an unfavorable trade-off. On the other hand,
SGCPNet [51] exhibits notable speed but lacks accuracy.
In contrast, our HAFormer has achieved a better balance
between these aspects. The lower overall performance on
the CamVid dataset, compared to Cityscapes, is due to
its smaller size and lower resolution, which highlights the
robust generalization capability of our approach. Visualization
results in Fig. 10 further demonstrate the advantages of our
HAFormer.

3) Speed Comparison: To ensure a fair comparison,
all methods are executed on the same platform, as the
computational load directly impacts inference speed, which
can vary depending on the device. In our controlled evaluation,
a single NVIDIA RTX 2080Ti GPU is utilized to measure
model execution times. The comparison of speed and runtime
between our proposed HAFormer and other lightweight
methods is detailed in Table VIII. The experiments involve the
spatial resolution of 512 × 1024 for evaluation, aligning with

methods with the official code to ensure fairness. Table VIII
demonstrates the impressive speed of HAFormer, achieving
a frame rate of 105 fps when processing image streams
of size 512 × 1024, positioning it as one of the fastest
methods. While DABNet operates at 139 fps, HAFormer’s
competitive accuracy of 74.2% is significant for real-world
applications like autonomous driving. Balancing speed (105
fps) and accuracy effectively, HAFormer emerges as a strong
candidate for practical use.

V. CONCLUSION

In this study, we introduced HAFormer, a new lightweight
semantic segmentation approach. We designed the Hierarchy-
Aware Pixel-Excitation Module (HAPE) to extract enhanced
hierarchical local features. Additionally, an Efficient Trans-
former module efficiently captures extensive global features
with a limited computational load. Then, we incorporated
a correlation-weighted Fusion (cwF) mechanism to combine
highly correlated CNN and Transformer features for improved
representational learning. Through extensive experiments on
benchmark datasets, our approach has shown effectiveness
and generalization, highlighting the capability of HAFormer to
achieve a balanced trade-off between segmentation accuracy
and computational efficiency.
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