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Abstract— Recently, deep convolutional neural networks
(CNNs) have achieved remarkable success in single-image super-
resolution (SISR) tasks. However, these methods often suffer
from high computational and memory requirements, limiting
their practicality for real-world applications. To address this
challenge, we propose a lightweight and efficient dual-branch
information interaction network (DIIN) for SISR. DIIN adopts
a dual-branch structure that differs from the typical serial
network architectures. Specifically, we design the CNN branch
and Transformer branch as parallel structures. In the CNN
branch, we employ a symmetric dual-branch feature interaction
module (DFIM) to extract valuable local feature information.
Concurrently, the Transformer branch utilizes a recursive Trans-
former to capture long-term global information and enhance
reconstructed image details. By simultaneously considering these
two branches, our model effectively combines the strengths
of CNN in extracting local information and Transformer in
capturing global information. Recognizing the complementarity
of these two branches in SISR, we further incorporate a coef-
ficient learning scheme to enhance their information interaction
and obtain more comprehensive feature information, thereby
improving overall model performance. Extensive experiments
demonstrate that our DIIN outperforms competitive methods
while consuming fewer computational resources and memory.

Index Terms— Information interaction, lightweight network,
single image super-resolution (SISR).

I. INTRODUCTION

IMAGE super-resolution (SR) is a fundamental task to
enhance low-resolution (LR) images by generating high-
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resolution (HR) counterparts, thereby improving their visual
quality and capturing finer details. For more accurate analysis
and measurement, SR is used to enhance the quality of images
captured in instrumentation and measurement processes, lead-
ing to more precise and reliable results [1], [2]. However, this
LR-to-HR mapping is ill-posed, as multiple HR images can
be downsampled to yield the same LR image. In recent years,
convolutional neural networks (CNNs) have gained significant
attention in SR methods due to their exceptional feature extrac-
tion capabilities, surpassing traditional approaches [3], [4].
The groundbreaking work by Dong et al. [5] introduced the
super-resolution CNN (SRCNN), which served as a foundation
for subsequent CNN-based single-image SR (SISR) models.
Building upon this, Kim et al. [6] proposed a highly deep SR
model called very deep SR (VDSR), comprising 20 convolu-
tional layers. VDSR exhibited superior performance compared
to SRCNN, as the authors observed that deeper network
architectures enable larger receptive fields. This capability
allows the model to capture more contextual information and
ultimately achieve better SR results.

In recent years, there has been a noticeable trend in SR algo-
rithms to incorporate additional convolutional layers to extract
more image features and enhance performance. However, this
approach often results in larger model parameters, increased
memory consumption, and slower training and testing speeds.
For instance, RCAN [7], despite demonstrating promising
results, consists of over 800 convolutional layers and has
a parameter volume of around 15 M, making it unsuitable
for devices with limited resources. Consequently, there is an
increasing demand for the development of lightweight and
efficient models that can be deployed on mobile devices while
still achieving high SR performance within the constraints of
available resources.

To address this issue, research on lightweight backbone
networks has become a hot topic in recent years for
mobile devices. Many methods adopt recursive techniques or
parameter-sharing strategies to reduce the number of param-
eters [8]. Increasing network depth or width can compensate
for the diminished performance caused by the reduced number
of parameters, but it also requires more computation time.
CARN [9] leverages weight sharing and group convolution to
reduce network parameters. IMDN [10] employs residual fea-
ture distillation and contrast-aware channel attention (CA) to
ensure model efficiency. LCRCA [11] proposed a lightweight
and effective residual block that improves residual information
in the same computational budget. SFFN [12] suggested using
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a general-purpose, lightweight, and efficient feature fusion
block that substitutes the commonly used 1 × 1 convolution.
ETDS [13] converted time-consuming operators into more
efficient alternatives and introduced a dual-stream network
to improve the capability of feature extraction. With the
continuous development of Transformers in natural language
processing, researchers have started exploring the possibil-
ity of applying them to computer vision tasks. While the
Transformer excels at enhancing long-term dependencies in
image data and significantly improves image detail restoration,
most previous methods simply replaced CNN structures with
Transformers, which can cause the network to lose its ability
to extract local features. These local features play a crucial
role in image understanding and reconstruction by maintain-
ing their stability under different viewing angles. Therefore,
fully integrating the advantages of CNN and Transformer
for improved image reconstruction remains a significant
challenge.

Most of the current SR model backbones use a serial
structure, which is a connection structure between modules.
This allows feature information to flow unidirectionally and
gradually extract more feature information to restore higher
quality images. For models that integrate CNN and Trans-
former, such as LBNet [8], the model backbone is divided into
CNN and Transformer parts and connected in series, combin-
ing the advantages of CNN and Transformer to achieve good
performance. At the same time, inspired by LatticeNet [14],
the butterfly structure in it has inspired us. Different oper-
ations are performed in the upper and lower branches of
this structure, which gives them incomplete identical feature
information. By interacting and fusing this information, more
effective feature information can be obtained to restore better
images. Therefore, we attempt to create a butterfly structure
between CNN and Transformer, allowing short-term and long-
term information to flow through the network for better
performance.

To this end, we propose a lightweight dual-branch infor-
mation interaction network (DIIN). Unlike common serial
networks, which typically use a CNN to extract local feature
information followed by a Transformer module (TM) to further
extract global feature information, our DIIN forms a parallel
structure where CNN and Transformer are combined. This
enables the simultaneous flow of both local and global feature
information within our network. To further enhance perfor-
mance by capturing fine-grained texture details and acquiring
global information, we adopt a recursive strategy on the
basic Transformer in the Transformer branch. This recursive
mechanism reduces the number of network parameters and
computational costs. Furthermore, DIIN utilizes combination
coefficients (CCs) between the CNN branch and Transformer
branch to facilitate information exchange, allowing our net-
work to obtain more feature information and produce better
image restoration results.

Our contributions can be summarized as follows.
1) We propose an effective symmetric dual-branch feature

interaction module (DFIM) that utilizes multiscale fea-
ture extraction units (MFEUs) to extract local features
for image reconstruction.

2) We use a recursive Transformer in the Transformer
branch to learn long-term dependencies in images,
allowing us to obtain global information and refine
texture details while reducing the number of network
parameters and computation costs.

3) We introduce the new lightweight DIIN, which inte-
grates CNN and Transformer mechanisms using an
interactive scheme to provide complementary informa-
tion yielding an optimal balance between model size and
performance.

II. RELATED WORK

A. CNN-Based Lightweight Super-Resolution

Recently, researchers have been striving to achieve a better
balance between model size and performance [13]. Hui et al.
[15] developed a lightweight information distillation network
(IDN) for SR that achieved good results with a small number
of parameters. Using IDN as a basis, IMDN [10] constructed a
cascaded information multilayer distillation block that extracts
hierarchical features from the image step by step. Liu et al.
[16] comprehensively analyzed the information distillation
mechanism, introduced residual mechanisms into IMDN, and
proposed the residual feature distillation network (RFDN).
Other approaches such as ESRN [17] utilized the neural archi-
tecture search [18] strategy to create a lightweight model struc-
ture. Lan et al. [19] leveraged MADNet’s dense lightweight
network to enhance the representation and learning of the
metric features. Sun et al. [20] designed a hybrid pixel unshuf-
fled network (HPUN) introducing an effective downsampling
module. Additionally, Wang et al. [21] proposed a lightweight
attention-directed feature aggregation network (AFAN), which
consists of a simple CA module and stacked multiaware
attention modules. Gao et al. [22] proposed a lightweight
image SR method called feature distillation interaction weight-
ing network (FDIWN), which utilizes residual distillation to
extract deep feature information and enhance the restoration
of super-resolved images. At last, Park et al. [23] devised a
lightweight dynamic residual self-attention network (DRSAN),
incorporating the automated design of residual connections.

B. Transformer-Based Super-Resolution

The Transformer was initially used in natural language pro-
cessing, but its research has extended to the field of computer
vision. With further exploration, the use of Transformers has
proven to be effective in dealing with long-term dependen-
cies in images. Consequently, numerous Transformer-based
methods have been presented and applied to various computer
vision tasks. For instance, Chen et al. [24] developed a pre-
training image processing Transformer that achieves promising
results in SR, noise removal, and rain removal. Liang et al.
[25] transplanted the Swin Transformer directly into image
restoration tasks to merge the benefits of convolution networks
and Transformers. Compared to previous models, SwinIR has
fewer parameters and has achieved better results. Later on,
Lu et al. [26] presented an efficient SR transformer (ESRT),
combining lightweight CNN and Transformer backbones to
use global information for better performance. Gao et al. [8]
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Fig. 1. Architecture of the proposed DIIN.

presented a lightweight bimodal network for SISR using cas-
cading symmetric CNN and recursive Transformers. Li et al.
[27] proposed a lightweight cross-receptive focused inference
network (CFIN). Its objective is to adaptively modify network
weights by incorporating modulated convolutional kernels
with local representative semantic information. In Chen et al.
[28] dual aggregation transformer for image super resolution,
it stitches together spatial attention and CA, and parallelizes
the Transformer with CNN in the module, while extracting
local attention and global attention. However, these approaches
failed to utilize CNNs and Transformers fully. Furthermore,
balancing the size and performance of the model remains
challenging.

III. PROPOSED METHOD

A. Network Framework

In this section, we provide a detailed description of the
lightweight DIIN, which comprises the CNN branch, Trans-
former branch, and image reconstruction component (as shown
in Fig. 1). The CNN branch utilizes a series of symmetrical
DFIMs for local feature extraction, while the Transformer
branch focuses on global feature extraction. Let ILR, ISR, and
IHR represent the input LR images, reconstructed SR images,
and corresponding HR images, respectively. At the beginning
of the model, we apply a 3 × 3 convolutional layer to extract
shallow features

Fsf = Hsf(ILR) (1)

where Hsf(·) represents the operation for extracting shallow
features and Fsf ∈ RC×W×H (C denotes the number of
channels and is set as 32 in our model) denotes the extracted
shallow features. Then, these shallow features are fed into both
the CNN branch and Transformer branch for local and global
feature extraction

FCNN1 = HDFIM1(Fsf) (2)

where HDFIM1(·) denotes the first CNN-based symmetri-
cal DFIM, while FCNN1 ∈ RC×W×H represents the locally
extracted features of the first CNN branch. Symmetric DFIM
is one of the key elements of DIIN and consists of multi-
ple MFEUs. These modules will be discussed in detail in

Section III-B. To enable information interaction between the
upper and lower branches, the combining coefficient (CC)
learning scheme is employed to obtain corresponding weights
for the feature information{

Fq1z = FCNN1 + Fsf × HCC(Fsf)

Fp1z = Fsf + FCNN1 × HCC(FCNN1)
(3)

where HCC(·) represents the CC operation, Fq1z ∈ RC×W×H

and Fp1z ∈ RC×W×H refer to the first interactive information
from the upper and lower branches, respectively. Subsequently,
Fp1z is inputted into the first Transformer unit in the Trans-
former branch to obtain the global information:

FTM1 = HTM1
(
Fp1z

)
(4)

where HTM1(·) refers to the Transformer operation, while
FTM1 ∈ RC×W×H denotes the global feature information
extracted by the first Transformer. Afterward, the local infor-
mation from the upper branch and global information from the
lower branch are combined to further enhance the interaction
between the two branches

Fcat = Hcompress
(
Concat

(
Fq1z, FTM1

))
(5){

Fadd1 = Fcat + Fq1z

Fadd2 = Fcat + FTM1
(6)

where Concat(·) represents the concatenation operation along
the channel dimension, Hcompress(·) denotes the 1 × 1 com-
pression channel convolution layer, Fcat ∈ RC×W×H represents
the result of the channel compression, and Fadd1 ∈ RC×W×H

and Fadd2 ∈ RC×W×H refer to the interactive information from
the upper and lower branches, respectively. The subsequent
operation is similar to that of the previous module and can be
expressed as follows:

FCNN2 = HDFIM2(Fadd1) (7){
Fq2z = FCNN2 + Fadd2 × HCC(Fadd2)

Fp2z = Fadd2 + FCNN2 × HCC(FCNN2)
(8)

FTM2 = HTM2
(
Fp2z

)
(9)

where HDFIM2(·) denotes the second CNN-based symmetrical
DFIM, FCNN2 ∈ RC×W×H represents the locally extracted
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Fig. 2. Architecture of the DFIM and the CC learning.

Fig. 3. Architecture of MFEU.

features from the second CNN branch, Fadd1 and Fadd2 rep-
resents the addition of the upperand down branches, HCC(·)

represents the CC operation, Fq2z ∈ RC×W×H and Fp2z ∈

RC×W×H refer to the second interactive information from the
upper and lower branches, HTM2(·) refers to the Transformer
operation, and FTM2 ∈ RC×W×H denotes the global feature
information extracted by the second Transformer. Once the
local characteristics and global information from the upper
and lower branches are added, it is fed into the reconstruction
module for SR image reconstruction. Meanwhile, the shallow
features are also included to create the final SR image

ISR = Hr1
(
Fq2z + FTM2

)
+ Hr2(Fsf) = HDIIN(LLR) (10)

where Hr (·) refers to the image reconstruction module, which
is composed of a 3 × 3 convolutional layer and the pixel-
shuffle layer, and HDIIN denotes the proposed network. Similar
to previous work, we use the L1 loss function to optimize the
model during training. Given a training dataset {I i

LR, I i
HR}

N
i=1,

we solve

L(2) =
1
N

N∑
i=1

∥∥HDIIN
(
I i
LR, 2

)
− I i

HR

∥∥
1 (11)

where 2 indicates the parameters set of the proposed DIIN,
N denotes the total number of the training images.

B. Dual-Branch Feature Interaction Module

As illustrated in Fig. 2(a), our DFIM consists of mul-
tiscale feature extraction units (MFEUs), CC learning, and

a 3 × 3 convolution that reduces the number of feature chan-
nels. Furthermore, a residual link is incorporated to preserve
the original information of the features.

1) Multiscale Feature Extraction Unit: As depicted in
Fig. 3, the MFEU begins with a 1 × 1 convolutional layer to
extract shallow features. The data are then enriched through
the average-pooling and max-pooling layers to obtain more
useful feature information. Moreover, each branch incorporates
two 3 × 3 convolution layers to expand the receptive field
and facilitate the fusion of features. These operations can be
summarized as follows:

Fs = H1×1
(
Fm

in

)
Fconv1 = H3×3(Havg(Fs))

Fconv2 = H3×3(Fconv1)

Fconv3 = H3×3(Hmax(Fs))

Fconv4 = H3×3(Fconv3)

Fm
cat1 = Concat(Fs, Fconv1, Fconv2, Fconv3, Fconv4) (12)

where Fs, Fconv1, Fconv2, Fconv3, Fconv4 ∈ RC×W×H , and Fm
cat1 ∈

R5C×W×H . Fm
in ∈ RC×W×H denotes the input feature of the

MFEU, H1×1(·) denotes the 1 × 1 convolutional layer, Havg(·)

indicates the average-pooling operation, Hmax(·) denotes the
max-pooling operation, and H3×3(·) indicates the 3 × 3 convo-
lutional layer. Then, the integrated features are compressed by
the 1 × 1 convolutional layer and combined with the previous
feature information to get a more informative feature repre-
sentation. To extract channel statistics and spatial contextual
information, the CA module and the enhance spatial attention
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(ESA) module are utilized, with adaptive weights computed on
the output of the two attention operations. Finally, the output
information is obtained through residual links that connect the
original feature information with the output from the above
operations. All of these steps can be summarized as follows:

Fcom1 = Hcompress1
(
Fm

cat1

)
Fm

cat2 = Concat(Fcom1, Fconv2, Fconv4)

Fca = Hca
(
Fm

cat2

)
Fsa = Hesa

(
Fm

cat2

)
Fm

add = αca Fca + αsa Fsa

Fm
out = Hcompress2

(
Fm

add

)
+ Fm

in (13)

where Fcom1, Fm
out ∈ RC×W×H , Fm

cat2, Fca, Fsa, and Fm
add ∈

R3C×W×H . Hcompress1(·) and Hcompress2(·) represents the
1 × 1 compression channel convolution layer, Hca(·) and
Hesa(·) indicate the CA and ESA, and α indicates the cor-
responding adapter.

2) Combination Coefficient Learning: Inspired by the but-
terfly structure proposed by Luo et al. [32], we utilize the CC
learning scheme as a bridge for feature information circulation
between the CNN and Transformer structures, to achieve the
information interaction of the two branches. As depicted in
Fig. 2(a), vectors Ai and Bi are employed as link weights in
the module. These operations can be summarized as follows:

Ai = HCC(Fdown−in)

Bi = HCC(Fup−in)

Fup−out = Fup−in + Ai (Fdown−in)

Fdown−out = Fdown−in + Bi (Fup−in) (14)

where Ai and Bi are calculated as weight values by the
lower and upper branches with the CC operation HCC, respec-
tively. The final outputs Fup−out ∈ RC×W×H and Fdown−out ∈

RC×W×H are determined according to the format described
earlier.

As illustrated in Fig. 2(b), the CC scheme is made up of
two statistical measures, namely the average value and the
standard deviation of the feature map. Given a set of feature
maps, the upper branch utilizes an average-pooling layer to
obtain the mean value of each feature map, while the lower
branch calculates the standard deviation of each feature map.
The statistical vector generated by each branch is then fed into
two 1 × 1 convolutional layers, followed by a ReLU activation
layer and a Sigmoid activation layer. Finally, the outputs of
the two branches are combined to form the output of the CC.

C. Recursive Efficient Transformer

As previously mentioned, a symmetrical cross-feature CNN
is used to extract local features in diagrams. However, local
features alone are insufficient for rebuilding high-quality SR
images, and it is necessary to extract global feature infor-
mation. To address this issue, we incorporated Transformer
to learn long-term image dependencies. For the Transformer,
we employed the coding portion of the standard Transformer
structure proposed by Lu et al. in ESRT [26]. As illustrated
in Fig. 4, the Transformer comprises an efficient multihead

Fig. 4. Architecture of TM.

attention (EMHA) and a multilayer perceptron (MLP). Addi-
tionally, layer normalization (Norm) [33] is implemented
before each block, with a residual connection applied after
each block. For the input feature F t

in ∈ RC×W×H of the TM,
these operations can be summarized as follows:

F t
mid = HEMHA

(
HNorm

(
F t

in

))
F t

out = HMLP
(
HNorm

(
F t

mid

))
(15)

where F t
mid, F t

out ∈ RC×W×H . HNorm(·) represents layer nor-
malization operations, HEMHA(·) and HMLP(·) represent the
EMHA and MLP modules, respectively. Following [34], each
head of the EMHA must perform scaled dot product attention,
and then concatenate all the outputs before performing a linear
transformation to obtain the output. The scaled dot product
attention can be expressed as

Attention(Q, K , V ) = Softmax
(

QK T

√
dk

)
V (16)

where Softmax represents the softmax operation, and Q, K ,
and V denotes the matrix of the query, key, and value. To make
better use of the Transformer’s long-term dependencies with-
out increasing the number of parameters, we implement a
recursive mechanism that facilitates parameter sharing. This
is expressed as

F rt
out = H3×3

(
H ◦

TM2

(
H ◦

TM1

(
F rt

in

)))
(17)

where F rt
in, F rt

out ∈ RC×W×H , ◦ indicates the recursion operation
and the output of TM is recalculated as the input.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

Similar to previous work, we employ DIV2K as the pri-
mary dataset for model training. To evaluate the effectiveness
of DIIN, we use five benchmark test datasets, including
Set5 [36], Set14 [37], Urban100 [38], BSDS100 [39], and
Manga109 [40]. The amplification factors are set to × 2, × 3,
and × 4, respectively. Furthermore, we employ peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM) [41]
as evaluation metrics to assess the performance of SR images
on the Y channel of the YCbCr color space.

B. Implementation Details

During the training process, we randomly extract a series of
48 × 48 patches from the training data as inputs and augment
them using random rotation and horizontal flips. We employ
an initial learning rate of 2 × 10−4, which is subsequently
reduced to 6.25 × 10−6 using cosine annealing. The network is
trained using the Adam optimizer in the PyTorch tool with an
NVIDIA RTX 2080Ti GPU. In the final model configuration,
each module has input and output channels set to 32, and two
DFIMs are used. The TM undergoes one recursive iteration.
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TABLE I
AVERAGE PSNR/SSIM VALUES FOR SCALE FACTOR × 2, × 3 AND × 4 ON SET5, SET14, BSD100, URBAN100, AND MANGA109 DATASETS.

THE BEST AND SECOND BEST INDEXES ARE HIGHLIGHTED AND UNDERLINED

TABLE II
COMPARISONS WITH SOME TRANSFORMER-BASED METHODS. DIIN CAN ACHIEVE COMPETITIVE RESULTS WITH FEWER MULTIADDS

C. Comparison With State-of-the-Arts
In Table I, we compare DIIN with several lightweight

SISR models, including VDSR [6], IDN [15], CARN [9],
IMDN [10], AWSRN-M [29], MADNet [19], RFDN [16],
SMSR [30], LAPAR-A [31], DRSAN-48s [23], HPUN-
M [20], LatticeNet [14], AFAN-M [21], SFFN [12], and
LCRCA [11]. These models have shown promising results in
lightweight SISR tasks. From the table, it can be observed that
DIIN achieves competitive performance. Moreover, compared
to these models, DIIN exhibits lower computational cost and a
moderate number of parameters, demonstrating the effective-
ness of our approach. Specifically, on the Manga109 dataset,

DIIN achieves an average PSNR improvement over RFDN of
0.07, 0.20, and 0.23 dB for different scaling factors. In the
×4 SR task, DIIN outperforms several other models on all
datasets while maintaining a reasonable computational cost,
striking a good balance between performance and efficiency.

Recently, several SISR methods based on Transformers
have emerged. To compare our DIIN with these recent
approaches, we conduct a detailed evaluation and compar-
ison with SwinIR [25], ESRT [26], and LBNet [8]. The
results are presented in Table II. From the table, it can be
observed that DIIN requires fewer calculations compared to
the aforementioned three methods, making it more competitive
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Fig. 5. Visual comparisons of DIIN with other SR methods on BSDS100 and Urban100 datasets.

Fig. 6. Visualization of upper (CNN) branch and lower (transformer) branch
feature maps.

in terms of computational efficiency. Regarding performance,
DIIN achieves a lower PSNR value than SwinIR, but higher
values than ESRT and LBNet. Similarly, DIIN demonstrates a
higher SSIM value than LBNet and comparable performance
to ESRT, albeit lower than that of SwinIR. It is worth noting
that SwinIR utilizes an additional dataset (Flickr2K) for train-

TABLE III
STUDY OF RECURSIVE TIMES ON SET5 DATASET (×4)

ing, which may contribute to its superior model performance.
Overall, these observations further validate the effectiveness
of DIIN.

Additionally, we provide visual comparisons between DIIN
and other lightweight SISR models in Fig. 5. Specifically,
in img_067 (×2), DIIN successfully restores the ground
texture, closely resembling the HR image. In_img 28 (×3),
although the SR image generated by DIIN is slightly blurred,
it effectively restores the line details. In img_148026 (×4),
DIIN accurately preserves the direction of the lines and
enhances the image clarity and details, while the SR images
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Fig. 7. Visual comparisons on real-world datasets (including RealSRv3 and DRealSR).

TABLE IV
STUDY OF DIFFERENT MODULES IN THE DUAL-BRANCH

STRUCTURE ON URBAN100 DATASET (×4)

TABLE V
PERFORMANCE COMPARISONS OF DFIM WITH OTHER BASIC

MODULES ON MANGA109 DATASET (×4)

TABLE VI
QUANTITATIVE COMPARISONS ON REAL-WORLD DATASETS

generated by other models appear either blurry or incorrectly
restored. Overall, the SR images generated by DIIN are more
similar to the ground truth compared to other methods.

D. Ablation Studies

1) Recursive Investigations: To utilize our designed mod-
ules without increasing the model parameters, we incorporated
recursive mechanisms in both the CNN branch and the Trans-
former branch. To assess the effectiveness of these recursive
mechanisms, we conducted several research experiments with
varying recursion times. The results are presented in Table III,
where RE-N denotes the module recursively applied N times,
and RE-0 indicates that the recursive mechanism was not
employed. As expected, the model’s performance improves
as the number of recursive times increases. However, when
the number of recursions reaches 2 (RE-2), compared to the
significant increase in computational cost, the performance is
accidentally reduced. Consequently, we determined that setting

Fig. 8. Model parameters study on Set5 dataset (×4).

the number of recursive times to one strikes a better bal-
ance between performance, computational cost, and execution
time.

2) Dual-Branch Structure Investigations: The proposed
dual-branch structure consists of two branches, with the upper
branch corresponding to the CNN module and the lower
branch corresponding to the TM. We conducted a series of
experiments to evaluate the effectiveness of this design in
consistently improving performance. Additionally, to visually
observe the feature changes inside the model, we separately
visualize the output of the CNN branch and the Transformer
branch, as shown in Fig. 6. It is apparent from these visu-
alizations that the feature maps in the CNN branch contain
more color and texture information, while the feature maps
in the Transformer branch contain more edge and contour
features. By combining these two types of feature information,
we can interactively amalgamate the complementary local
texture and global edge information, ultimately leading to the
production of higher quality SR images. Table IV displays the
SISR results of these dual-branch structures under different
conditions. Despite the increase in parameters caused by the
introduction of the CNN and TMs in the dual branches, there is
a significant improvement in performance. This improvement
is substantial and fully demonstrates the effectiveness of the
designed dual-branch structure.

To evaluate the effectiveness of the interaction scheme (CC)
used in our design, we also conducted an additional experiment
by removing this scheme from the model (as depicted in the
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Fig. 9. Model multiadds study on Set5 dataset (×4).

Fig. 10. Model complexity study on Set5 dataset (×4).

third column in Table IV). Despite the fact that there is not
much difference in the number of parameters and calculations,
there was a noticeable decrease in both PSNR and SSIM
performance metrics. This finding shows that the interaction
scheme (CC) in DIIN plays an important role in improving
performance.

Furthermore, we assessed the effectiveness of DFIM by
replacing it with commonly used feature extraction modules in
lightweight SISR models, such as IMDB [10] and RFDB [16].
As presented in Table V, DFIM does increase the network’s
parameters and computational costs compared to IMDB and
RFDB. However, substantial performance improvements are
observed. We believe that the increase in computational costs
is reasonable, considering the significant benefits gained from
using DFIM as an effective feature extraction module.

3) Real-World Image Super-Resolution: To demonstrate the
generalization and effectiveness of our model, we compare
DIIN with some classic lightweight SR models, namely
SRResNet [35], IMDN [10], and ESRT [26], using the
RealSR [42] dataset. We retrain these models on the RealSR
dataset to ensure fairness in comparison. Both DIIN and the
compared models are trained uniformly on the RealSR dataset,
and a standardized × 4 test is conducted. The hyperparameters
remain consistent with those used during DIV2K training.

The results are presented in Table VI. As indicated in the
table, DIIN outperforms all other methods across all three
metrics, exhibiting a significant margin over the second-best
approach. Additionally, visual comparison charts in Fig. 7
demonstrate that DIIN effectively captures fine texture details.
These experiments highlight the applicability of our proposed
model and its ability to deliver excellent SR performance in
real-world scenarios.

E. Model Complexity Studies

Table I illustrates the effective balance between model
size and performance achieved by our model. Moreover, the
execution time of a model serves as a crucial indicator of its
complexity. To compare our DIIN with other SISR methods,
parameter comparison is presented in Fig. 8, while multiadds
comparison is displayed in Fig. 9. Additionally, to facilitate
comparative visualization with other models, we also provide
comparisons of the number of parameters, execution time, and
model performance in Fig. 10. It can be observed that our
DIIN delivers considerable PSNR results while maintaining a
relatively balanced configuration in terms of parameters and
execution time. These findings further affirm that DIIN is a
lightweight and efficient SISR model.

V. CONCLUSION

This article presents a lightweight DIIN for efficient
image SR. DIIN incorporates two branches, each serving
a specific purpose. In one branch, an efficient symmetric
CNN-based model is employed to extract local information.
Meanwhile, the other branch utilizes a recursive Transformer
to capture long-term dependencies in images. In the CNN
branch, we introduce a DFIM and a MFEU to extract
more representative feature information. Additionally, in the
Transformer branch, we leverage a recursive mechanism to
effectively refine global information without increasing the
number of parameters. In summary, DIIN adopts a dual-branch
approach to extract and combine both local and global
information, achieving a better balance between model size,
execution time, and performance in the context of efficient
image SR.
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