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Abstract. In contrast to the abundant research focusing on large-scale
models, the progress in lightweight semantic segmentation appears to
be advancing at a comparatively slower pace. However, existing com-
pact methods often suffer from limited feature representation capability
due to the shallowness of their networks and the lack of feature guid-
ance during the decoding process. In this paper, we propose a novel
lightweight segmentation architecture, called Multi-scale Feature Prop-
agation Network (MFPNet), to address the dilemma. Specifically, we
design a robust Encoder-Decoder structure featuring symmetrical resid-
ual blocks that consist of flexible Bottleneck Residual Modules (BRMs)
to explore deep and rich semantic context. Furthermore, taking benefit
from their capacity to model latent long-range contextual relationships,
we leverage Graph Convolutional Networks (GCNs) to facilitate multi-
scale feature propagation between the BRM blocks. When evaluated on
benchmark datasets, our proposed approach shows superior segmenta-
tion results.

Keywords: Lightweight semantic segmentation · multi-scale feature
propagation · Graph Convolutional Networks (GCNs)

1 Introduction

Semantic segmentation is an essential task in computer vision, which involves
the classification of individual pixels into distinct semantic categories. Exist-
ing large-scale models, such as [2,14,26], have undeniably achieved remarkable
performance. However, they are far from meeting the requirements of resource-
limited devices in terms of inference speed and computational complexity. As a
result, researchers have increasingly turned their attention to compact methods
as a means to alleviate the computational burden associated with these models.
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Fig. 1. “Accuracy-Speed-Parameters” comparison on the Cityscapes test dataset. A
smaller radius of a circle indicates a smaller model size. Our MFPNet achieves a better
trade-off between the performance, model size, and inference speed.

For example, models like ERFNet [21] and DABNet [15] have designed non-
bottleneck factorized convolution modules to reduce the convolutional dimen-
sion. However, these approaches sacrifice certain spatial details, thereby leading
to suboptimal accuracy. Some more recent approaches such as DFANet [16],
ICNet [25], and FBSNet [10] have aimed to address this accuracy issue by
employing a multi-branch architecture. However, using multiple branches can
potentially introduce additional delays in the backpropagation process. In addi-
tion, methods like MSFNet [22] and DSNet [3] have adopted U-shaped architec-
tures to utilize the Encoder’s features to guide the resolution recovery process
of the Decoder. Nevertheless, the conventional convolutions used in the connec-
tion process can only aggregate spatially adjacent pixels, resulting in imperfect
guidance.

To address the aforementioned challenges, in this work we propose a multi-
scale feature propagation approach for lightweight semantic segmentation, abbre-
viated as MFPNet, which considers both model capacity and inference speed.
Our approach adopts a symmetrical codec structure enhanced with multi-scale
Simple Graph Convolutional Networks (SGCNs), which enables effective propa-
gation of latent object feature information. Compared to the limited local per-
ception of the conventional convolution, our multi-scale feature propagation app-
roach can aggregate information from spatially non-adjacent, long-range pixels
belonging to the same class. This empowers a more comprehensive gathering
of pixel-level details and contextual information, leading to superior segmenta-
tion results. As depicted in Fig. 1, our MFPNet achieves a trade-off between the
performance, model size, and inference speed.
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2 Related Work

2.1 Semantic Segmentation

Contemporary approaches to semantic segmentation can be broadly categorized
into two groups: large-scale models and lightweight models. The noteworthy
large-scale models include CNN-based models like DANet [9], integrating non-
local attention, Transformer-based models such as SegFormer [23], combining the
local vision of CNNs with the global perception of Transformers, and Diffusion-
based models such as DDPM [14], generating predictions by employing iterative
noise addition and the subsequent denoising.

Representative lightweight models include models such as BiseNet [24] and
DFANet [16], built upon lightweight backbones. Furthermore, real-time strate-
gies such as ERFNet [21] and FBSNet [10] involve transplanting and optimizing
effective modules from large models to construct entire models. However, it is
worth noting that these methods often encounter a marginal performance gap.
As a result, some researchers are dedicated to exploring methods to optimize the

Fig. 2. The overall architecture of the proposed Multi-scale Feature Propagation Net-
work (MFPNet).

Table 1. Details of the experiment settings.

Dataset Cityscapes [4] CamVid [1]

Learning Rate
Poly ( lr = lrin ×

(
1 − iter

totaliter

)0.9

)

lrin = 4.5 × 10−2 lrin = 1 × 10−3

Optimizer
SGD Adam

wd = 1 × 10−5 wd = 2 × 10−5

Loss Function CrossEntry Loss Function

Resolution 512 × 1024 360 × 480
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Table 2. Quantitative comparison results with the state-of-the-art methods on the
Cityscapes [4] test dataset. Para. represents Parameters, “∗" means more than a
single GPU, and “−" denotes not provided in the original reference.

Methods Backbone Para. (M) ↓ Input Size FLOPs (G) ↓ GPU FPS ↑ mIoU (%) ↓
DeepLab-V3+ [2] MobileNet-V2 62.70 - 2032.3 ∗ 1.2 80.9
DDPS-SF [14] MiT-B5 122.80 1024 × 2048 - ∗ - 82.4
SegFormer [23] MiT-B5 84.70 1024 × 2048 1447.6 ∗ 2.5 84.0
ENet [20] No 0.36 512 × 1024 3.8 Titan X 135 58.3
BiseNet-V1 [24] Xception-39 5.80 768 × 1536 14.8 1080Ti 106 68.4
ICNet [25] PSPNet-50 26.50 1024 × 2048 28.3 - 30 69.5
DABNet [15] No 0.76 512 × 1024 10.5 1080Ti 104 70.1
LMANet [12] No 0.95 512 × 1024 - RTX 3090 112 70.6
FBSNet [10] No 0.62 512 × 1024 9.7 2080Ti 90 70.9
MLFNet [8] ResNet-34 9.90 512 × 1024 10.7 Titan XP 95 71.0
DFANet [16] Xception-A 7.80 1024 × 1024 3.4 Titan X 100 71.3
DSANet [7] No 3.47 512 × 1024 37.4 1080Ti 34 71.4
MFPNet No 1.00 512 × 1024 18.6 V100 106 71.5

Fig. 3. Visual results on Cityscapes [4]. Note particularly the areas highlighted with
the white dotted boxes.

potential of these constrained features. Strategies include deploying dilated con-
volutions to expand the receptive fields, augmenting network width, and incor-
porating attentions [11]. This entails embedding channel or spatial attention
mechanisms within the model to facilitate better feature expression and model-
ing object dependencies on the feature maps. However, both of these attention
mechanisms primarily focus on local feature modeling.

2.2 Graph Convolutional Networks

Graph Convolutional Networks [13] employ a layer-wise message-passing func-
tion achieved through the fusion of linear transformations. This property enables
them to effectively model long-range dependencies while retaining local details,
beneficial for resolution recovery. The latent embedding features for the l-th layer
H(l), responsible for aggregating information within one-hop neighborhoods, can
be formally defined as:
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Table 3. Quantitative comparison results with the state-of-the-art methods on the
CamVid [1] test dataset.

Methods Resolution Speed (FPS) ↑ mIoU (%) ↑
ENet [20] 360 × 480 62 51.3
ERFNet [21] 720 × 960 139 67.7
DABNet [15] 360 × 480 146 66.4
LMANet [12] 360 × 480 333 66.5
ICNet [25] 720 × 960 34 67.1
FDDWNet [18] 360 × 480 79 66.9
LBN-AA [6] 720 × 960 39 68.0
FBSNet [10] 360 × 480 120 68.9
LARNet [12] 360 × 480 204 67.1

MFPNet
360 × 480 163 68.1
720 × 960 98 69.2

Fig. 4. Visual results obtained on CamVid [1]. Note particularly the areas highlighted
with the white dotted boxes.

H(l) = σ
(
ÂH(l−1)Θ(l−1)

)
, (1)

where σ denotes an activation function, Θ(l−1) ∈ R
d×d denotes the trainable

weight, d represents the dimension of graph space, and Â signifies the normal-
ization of the adjacency matrix A ∈ R

n×n, n denotes the number of nodes,
including self-constructing loops [19]:

Â = D− 1
2 (A + I)D

1
2 , (2)

Dii =
∑

j
(A + I)ij . (3)



MFPNet: A Multi-scale Feature Propagation Network 81

where D means the degree matrix and I is the identity matrix. Compared to
local attention mechanisms, GCN offers a broader, more global perspective. This
enables it to capture category correlations between nodes in the whole feature
map. In our work, GCN-processed feature information is seamlessly integrated
into the Decoder to enhance resolution recovery.

3 Methodology

3.1 Overall Architecture

As illustrated in Fig. 2(a), our proposed model incorporates a comprehensive
Encoder-Decoder framework. The gradual symmetrical stage in the feature
fusion aids in supplementing the details lost during encoding. Notably, simple
GCNs are used in the fusion process to model the feature information around
adjacent elements in the latent space.

Specifically, given an input image X ∈ R
3×H×W , the first step is to pass the

input image through the Initial Block, which is composed of three consecutive
3×3 convolution layers. These convolution layers are utilized to comprehensively
extract the initial feature F ∈ R

C× ∼
H × ∼

W . Then, the Encoder consists of three

Fig. 5. Comparison of accuracy before and after inserting the SGCN module on dif-
ferent models on the Camvid [1] test dataset.

Fig. 6. The visualization of feature maps from different scales of the input images both
before and after SGCNs. Refer to Fig. 2 for the illustration of Ei and Mi.
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downsampling layers of varying scales, each followed by a Bottleneck Residual
Module (BRM) block, denoted as Block1,2,3 generating Ei ∈ R

Ci×Hi×Wi , {i =
1, 2, 3}, respectively.

The Decoder mirrors the Encoder, maintaining the same scale alignment,
with the BRM blocks being sequentially labeled as Block4,5,6, generating
Dj ∈ R

Cj×Hj×Wj , {j = 1, 2, 3}. Each BRM block contains a set of Ln BRMs,
{n = 1, ..., 6}. For efficient feature reuse and enhancing the network, each block
employs a residual connection.

The middle information propagator, composed of a series of multi-scale Sim-
ple GCN, takes the input from the corresponding scale of the Encoder, which is
then projected into the graph space Gi ∈ R

Di×Ni , {i = 1, 2, 3}.
As shown in Fig. 2(d), after GCN processing, the long-range feature infor-

mation Gi is integrated and then re-projected back to the conventional fea-
ture space to obtain Mi ∈ R

Ci×Hi×Wi , {i = 1, 2, 3}. To ensure simplicity, we
directly incorporate the Mi and Dj features by addition. Finally, the Segmenta-
tion Head is used for the ultimate optimization of the output features before pixel
classification.

3.2 Bottleneck Residual Module (BRM)

As shown in Fig. 2(b), the entirety of BRM is a residual structure which makes
it possible to deepen the network. The head employs a bottleneck 3 × 3 convo-
lutional layer for minimizing computational load and parameter burden. Then,
the intermediate layer comprises of two sets of factorized convolutions, with
the second set incorporating dilated convolutions to amplify the receptive fields.
Notably, an attention mechanism [11] is interposed between them, as depicted in
Fig. 2(c), which serves to intensify feature expression. Finally, a 1×1 convolution
is employed to recover the channels.

3.3 Simple Graph Convolutional Network (SGCN)

As shown in Fig. 2(d), the features Ei ∈ R
Ci×Hi×Wi , {i = 1, 2, 3} received from

the Encoder are first mapped into the graph space Ωg:

Gi = (Ai,Xi) = Φ (Ei) ∈ R
di×ni , (4)

where ni = hi × wi ≤ Hi × Wi denotes the number of nodes, Φ is the projection
operation, and di represents the dimension of graph space. Xi are the node
features, and the adjacency matrix Ai = f

(
δ (Gi) , ψ(Gi)

T
)

is harnessed to
diffuse and propagate feature information among nodes, f is the dot-product
operation, and functions of δ and ψ are implemented with 1 × 1 convolutions.

For each node, the mapping comprises two components: the n nearest neigh-
bor pixels (xi, yi), i ≤ n, and the associated weight qi. It entails updating
subsequent vertex features based on edge attributes. The outcome Si of graph
convolution is represented as:

Si = Â (g (Gi))Qi, (5)



MFPNet: A Multi-scale Feature Propagation Network 83

where Qi is the learnable weight matrix, and g refers to graph convolution.
Finally, for the purpose of lightweight implementation, feature propagation from
the encoding stages guide the decoding process through straightforward addition
and formulate enhanced feature Oi.

Oi = γ (Mi + Dj) , (6)

where γ is the ReLU function, and Mi is obtained by the reprojection of Si.
Note that, similar feature propagation ideas have been proposed in [5,

17]. However, their boundary-aware requirement in object identification often
demands high resolution. Instead, our method does not require it and excels
with a rough guide. This differentiates our approach from the existing ones.

4 Experiments

4.1 Implementation Details

We implement our approach using PyTorch 1.8.1 with Python 3.6 and Cuda
10.1. We validate our MFPNet on two public semantic segmentation datasets,
Cityscapes [4] and CamVid [1], of which the training details are slightly different,
as detailed in Table 1. We compare our MFPNet with the SOTA segmentation
models in terms of Parameters, FLOPs, FPS, and mIoU under the different image
resolutions listed in the tables. Experimental results of Cityscapes and CamVid
are shown in Tables 2 and 3, respectively. All experiments were conducted with
one Tesla V100 GPU card.

4.2 Results

As shown in Table 2, large models achieve remarkable accuracy but come with
substantial demands on hardware resources and exhibit limited inference speed.
Among the lightweight models, DSANet [7] has achieved an accuracy close to
ours at the expense of a threefold increase in parameters, and an additional 20G
FLOPs. Other methods exhibit slightly lower accuracy than ours. The data sub-
stantiates that our approach achieves a more favorable trade-off between accu-
racy, size, and speed. The outcomes of visualization on the Cityscapes dataset [4]
are illustrated in Fig. 3.

The CamVid dataset [1], as presented in Table 3, boasts a smaller resolution
and fewer samples, effectively underscoring the generalizability of our model.
The visualized outcomes are depicted in Fig. 4.

It can be seen that, with our proposed MFPNet, the boundary details of
objects are well recovered thanks to the feature propagation strategy. Addi-
tionally, the long-range dependencies of multi-scale GCN have contributed to a
reduction in misclassification of small objects such as traffic lights.
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Table 4. Ablation studies on the Simple Graph Convolutional Network (SGCN) on
the datasets Cityscapes and CamVid. P., F., and val denote Parameters, FLOPs,
and validation.

M
F
P

N
et

SGCN P. (K)
Cityscapes [4] CamVid [1]

F. (G)
mIoU (%)

F. (G)
mIoU (%)

val test val test
� 843.20 17.8 71.2 69.9 5.8 88.3 66.2
� 1001.57 18.6 73.0 71.5 6.2 91.7 68.1

Table 5. Ablation studies on the Segmentation Head on the CamVid (360 × 480).

Model Para. (K) FLOPs (G) mIoU (%)

M
F
P

N
et

- 999.70 5.80 66.1
+SE 999.85 5.82 66.8 ( +0.7 )
+PSP 999.92 5.82 67.5 ( +1.4 )
+ASPP 1001.57 6.20 68.1 ( +2.0 )

4.3 Ablation Studies

Ablation Study on SGCN. As shown in Table 4, the inclusion of SGCN
modeling long-range pixel dependencies, reduces misclassification and yields
enhanced model performance on both datasets. The improvement is notable,
ascending from 69.9% mIoU to 71.5% mIoU on Cityscapes and from 66.2% mIoU
to 68.1% mIoU on CamVid. Remarkably, these gains come at a modest cost,
with parameters merely increasing by 200k and FLOPs experiencing a rise of
less than 1G. In Fig. 5, We adopted lightweight models ENet [20], ERFNet [21],
DABNet [15], FDDWNet [18], and DFANet [16], incorporated the SGCN module
into the models, and conducted experiments on the CamVid test dataset. Com-
pared to the original models, the inclusion of the SGCN resulted in a notable
2% performance enhancement. As illustrated in Fig. 6, the visual comparison of
feature maps from different scales of the input image both before and after the
integration of the SGCNs also demonstrates that SGCN aids in the effective
feature propagation.

Ablation on Segmentation Head. Our experiment encompasses various seg-
mentation heads, i.e., PSP, SE, and ASPP, as shown in Table 5. For ASPP, we
configure the reduction as 4 to optimize model size. All these alternatives have
contributed to accuracy enhancements. Remarkably, ASPP exhibits the most
promising outcome, achieving lies in parallel multi-rate dilated convolutions,
which preserve the image resolution and better perceive objects of different size.

Ablation on the Number of BRMs and Dilated Rate. As illustrated in
Table 6, the trend emerges - higher module quantities correspond to improved
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Table 6. Ablation studies on the number of BRMs and Dilated Rate on the CamVid
(360 × 480). Ln corresponds to the block number as introduced in Sect. 3.1.

L1 = L6 L2 = L5 L3 = L4 mIoU (%) ↑

M
F
P

N
et (1) (1) (1) 63.9

(2, 2, 2) (2, 2, 2) (2, 2, 2) 66.8 ( +2.9 )
(2, 2, 2) (4, 8, 16) (4, 8, 16) 68.1 ( +4.2 )

segmentation results. This is attributed to the fact that heightened network
depth correlates with the more advanced semantic context. Moreover, elevating
the dilated rates widens the receptive fields engendering more comprehensive
features. In comparison to one module per block, the final version integrating
three BRMs per block leads to a remarkable 4.2% enhancement.

5 Conclusion

This paper proposes a light yet efficient network MFPNet for real-time
lightweight semantic segmentation. Intermediate information undergoes prop-
agation via embedding the multi-scale SGCNs, to model latent dependencies
between long-range objects, a critical advantage for segmentation accuracy. The
incorporation of meticulously designed bottleneck residual modules serve to
deepen the network for powerful semantic insight. Finally, the segmentation head
employs the classical ASPP, requiring minimal effort while achieving prediction
enhancements.
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