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A B S T R A C T

In recent research, single-image super-resolution (SISR) using deep Convolutional Neural Networks (CNN)
has seen significant advancements. While previous methods excelled at learning complex mappings between
low-resolution (LR) and high-resolution (HR) images, they often required substantial computational and
memory resources. We propose the Efficient Feature Reuse Distillation Network (EFRDN) to alleviate these
challenges. EFRDN primarily comprises Asymmetric Convolutional Distillation Modules (ACDM), incorporating
the Multiple Self-Calibrating Convolution (MSCC) units for spatial and channel feature extraction. It includes an
Asymmetric Convolution Residual Block (ACRB) to enhance the skeleton information of the square convolution
kernel and a Feature Fusion Lattice Block (FFLB) to convert low-order input signals into higher-order
representations. Introducing a Transformer module for global features, we enhance feature reuse and gradient
flow, improving model performance and efficiency. Extensive experimental results demonstrate that EFRDN
outperforms existing methods in performance while conserving computing and memory resources.
. Introduction

single-image super-resolution (SISR) technology enhances the qual-
ty of captured photos by increasing their resolution and sharpness,
esulting in clearer and more detailed images (Li et al., 2024b). More-
ver, SISR is utilized in medical imaging equipment (Georgescu et al.,
023), surveillance systems (Jiang et al., 2022), and satellite imag-
ng (Xiao et al., 2023), allowing for enhanced image clarity and preci-
ion in various applications (Li et al., 2024a; Gao et al., 2023). Overall,
ISR significantly impacts computer vision technologies by improving
mage quality, optimizing visual experiences, and facilitating diverse
pplications across various devices and industries.

The development of single-image super-resolution (SISR) tasks has
rogressed significantly with the emergence of deep neural networks
nd residual learning. Dong et al. (2015) introduced the first image
uper-resolution neural network, SRCNN, surpassing traditional meth-
ds based on sparse representation and optimization. Subsequently,
arious neural networks have been proposed for image super-
esolution, showing superior performance (Lim et al., 2017). Residual
earning in deep networks (Zhang et al., 2018) enhances gradient
roblem-solving capabilities. This has led to the design of larger, deeper

∗ Corresponding author at: Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing, China.
E-mail address: csggao@gmail.com (G. Gao).

network architectures for improved performance, such as EDSR (Lim
et al., 2017) and RCAN (Zhang et al., 2018).

However, the trend towards larger and deeper CNN-based models
for improved performance has led to challenges in deploying these
models on mobile devices due to the large number of parameters. To
address the mentioned challenges, lightweight image super-resolution
network models are proposed to achieve efficiency and reduce param-
eters and computations. This includes constructing shallow networks
with single paths (Lai et al., 2017), recursive operations (Kim et al.,
2016b), information distillation mechanisms (Hui et al., 2019), and
neural structure search (NAS) (Hui et al., 2019). While traditional
CNNs can only extract local context information, Transformer models
have shown significant progress in computer vision. Transformer-based
methods, like SwinIR (Liang et al., 2021), utilized global information
extraction and sliding window mechanisms to address edge uncor-
relation in SISR. Integrating CNN and Transformer, as seen in Gao
et al. (2022b), combined local and global information for enhanced
performance not achievable by pure CNN or Transformer models. Kim
et al. (2024a) introduced a Transformer model designed to improve
image resolution while ensuring computational efficiency. Zhang et al.
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(2024a) developed a real-time Transformer framework optimized for
ractical applications, focusing on both speed and effectiveness. Liu
t al. (2024b) advanced the field further with an attention-based Trans-

former that strikes a balance between efficiency and performance,
offering more accessible and faster image enhancement solutions.

Existing methods that rely solely on CNN networks often struggle
ith context modeling, making it difficult to achieve high-quality

mage reconstruction. While some recent approaches have integrated
ransformers to address this, they tend to introduce excessive param-
ters and computational complexity. To overcome these challenges,
e propose the Efficient Feature Reuse Distillation Network (EFRDN),

which strategically combines CNN and Transformer in a series configu-
ration, effectively blending local and global information. To mitigate
the increase in parameters and computational demands, we employ
intermediate feature knowledge distillation, group convolution, and
other techniques to ensure model efficiency. Our EFRDN achieves
a good balance between image quality and model efficiency, using
100k to 200k fewer parameters and reducing computation by 10G
to 20G compared to existing methods, while also delivering a 0.1 to
0.2 dB improvement in PSNR performance. Additionally, to enhance
information flow across layers and leverage network potential through
eature reuse, we employ skip connections to exploit information from
ultiple layers. By enhancing feature reuse and gradient flow with
ense connections, we enhance model performance and generaliza-

tion. The Asymmetric Convolution Distillation Block (ACDB) module
within our CNN part includes the Feature Fusion Lattice Block (FFLB),
Asymmetric Convolutional Residual Block (ACRB), and Multiple Self-
Calibrated Convolution (MSCC). The FFLB module adjusts structure and
connects branches adaptively, while the ACRB module reinforces the
central skeleton of the square convolution kernel and extracts features
in different directions, thus enhancing the ability of the model to ex-
press complex patterns, significantly boosting performance. The MSCC
module, utilizing channel/spatial double-attention self-calibrated con-
volutions (SCCA/SCSA), extracts valuable spatial and channel features
to improve network efficiency. In this article, our main contributions
can be summarized as follows:

• We introduce a Self-calibrating Convolutional with Channel/
Spatial Attention (SCCA/SCSA) unit to enhance the discriminative
ability of CNNs by adaptively attending to relevant spatial and
channel information through self-calibrating operations. Addi-
tionally, we design Group Convolution Residual Blocks (GCRB)
utilizing depth-separable convolution to improve model efficiency.

• We propose the Asymmetric Convolutional Distillation Module
(ACDM) within the CNN, consisting of Feature Fusion Lattice
Block (FFLB), Asymmetric Convolutional Residual Block (ACRB),
and Multiple Self-Calibrated Convolution (MSCC). Through resid-
ual characteristic distillation, ACDM achieves superior results
with fewer parameters.

• We introduce an Efficient Transformer to enhance the global
features of the EFRDN model, employing a concatenated CNN-
Transformer structure. Furthermore, skip connections are utilized
to ensure feature reuse and address gradient-related challenges.

2. Related work

2.1. Deep SR model

SRCNN (Dong et al., 2015) pioneered CNN-based super-resolution,
tilizing a 3-layer architecture for nonlinear mapping, outperforming
raditional methods. VDSR (Kim et al., 2016a) increased network depth
o 20 layers for a broader receptive field, enhancing performance.
owever, deeper models may face convergence challenges, impacting

nference efficiency. Residual learning, exemplified by EDSR (Lim et al.,
2

2017), overcomes this by stacking more layers to learn residuals. Mod-
els with larger receptive fields improve reconstruction quality but entail
more parameters and computational load. Recursive learning, as seen in
DRCN (Kim et al., 2016b), accelerates convergence and reduces model
ize using shared weights and skip connections. Attention mechanisms,

like RCAN (Zhang et al., 2018), enhance feature extraction but may
not suit lightweight applications due to their complexity. Zhang et al.
(2024b) introduced a contrastive learning framework aimed at captur-
ing high-frequency details and enhancing perceptual quality, demon-
strating the effectiveness of contrastive methods in super-resolution
(SR). Kim et al. (2024b) explored a transformer-based model featuring
an adaptive attention mechanism that excels at managing long-range
dependencies and refining high-resolution details. Zhang et al. (2023)
proposed a hybrid model that integrates dynamic convolution with at-
tention mechanisms, resulting in improved efficiency and performance
in SR tasks.

2.2. Lightweight SR models

To enable SISR on mobile devices, researchers have focused on
ightweight SISR models (Li et al., 2021). Current methods can be

categorized into efficient model structure design (Gao et al., 2022a)
pruning or quantization techniques and knowledge distillation (Lee
et al., 2020). Weight sharing and channel grouping reduce the model
ize and facilitate structural design in many models. Strategies like
hannel splitting and layered distillation in IDN (Hui et al., 2018)

and IMDN (Hui et al., 2019) enhance feature extraction. FALSR (Chu
et al., 2021) applied neural architecture search (NAS) for compact
SISR networks, setting a new direction for structural design. Knowledge
transfer-based model compression (Lee et al., 2020) enhances student

odel performance by distilling knowledge from pre-trained teacher
odels. Pruning methods like Jiang et al. (2021) reduce model size

with minimal accuracy loss. Despite extensive exploration, unresolved
thematic issues in lightweight SISR models warrant further research.

2.3. Visual transformer

Transformers excel in advanced visual tasks (Li et al., 2022). To
enhance transformer efficiency and effectiveness in complex tasks, var-
ous transformer-based methods have emerged. Swin Transformer (Liu

et al., 2021) employed a local window and shift operation to control
ocus range and enhance window interaction. DaViT (Ding et al.,

2022) introduced dual self-attention for global context capture with
inear complexity. Leveraging the success of Transformers, researchers
ave explored their utility in low-level vision tasks. SwinIR (Liang

et al., 2021) implemented Swin Transformers with spatial window self-
attention and shift operations. Restorer utilized self-attention along
the channel dimension and integrated the UNet architecture. These
Transformer-based methods outperform CNN approaches, highlighting
the significance of both spatial and channel information for perfor-
mance. Liu et al. (2024a) proposed the Top-K Token Selective Trans-
former, which enhances high-resolution image reconstruction by focus-
ing on the most informative tokens, thus increasing both efficiency and
accuracy.

3. Proposed method

This section outlines the structure of our proposed Efficient Feature
euse Distillation Network (EFRDN), detailing the sequential and dense
onnections between the CNN component and the Transformer back-
one. Next, the Asymmetric Convolution Distillation Module (ACDM)
ithin the CNN block is described, comprising the Feature Fusion
attice Block (FFLB), Asymmetric Convolution Residual Block (ACRB),
nd Multiple Self-Calibrated Convolution (MSCC). Finally, the Efficient
Transformer’s specifics are presented.
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Fig. 1. The architecture of the proposed Efficient Feature Reuse Distillation Network (EFRDN). In the FFLB, 𝐴𝑖 and 𝐵𝑖 denote the Combination Coefficient (CC) learning, which
is elaborated in Fig. 4.
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3.1. Network framework

As depicted in Fig. 1, EFRDN comprises three main sections: shallow
feature extraction, deep feature extraction, and image reconstruction.
The deep feature extraction component involves a sequence of CNN
and Transformer mechanisms. 𝐼𝐿𝑅 and 𝐼𝑆 𝑅 denote the input low-
resolution image and super-resolution image, respectively. Initially,
shallow features are extracted using a 3 × 3 convolution, depicted as

𝐹𝑆 = 𝐺𝑆
(

𝐼𝐿𝑅
)

, (1)

where 𝐹𝑆 represents the shallow feature, and 𝐺𝑆 represents the func-
ion for shallow feature extraction. These features are then forwarded
o the CNN and Transformer modules sequentially for deep feature ex-

traction. In the CNN segment, four ACDM units are utilized, with shared
parameters between the first and third modules and between the second
and fourth modules. In deep learning algorithms, the parameter-sharing
strategy enables multiple features to use the same parameters, effec-
ively reducing the overall parameter count. This reduction increases
omputational efficiency. EFRDN leverages parameter sharing to lower
odel complexity, accelerate training, and enhance the model’s gen-

ralization capabilities. To enhance information flow across layers, a
eneficial connection pattern is introduced between each ACDM. Direct
onnections from any layer to all subsequent layers are established,
nsuring each layer receives feature maps from all preceding layers.
he output of each layer is denoted as 𝐹𝐴𝑖, and the process can be
escribed as:

𝐹𝐴_𝑖 =

{

𝐺𝑐 𝑜𝑛𝑣_1
(

𝐺𝐴𝐶 𝐷 𝑀_1
(

𝐹𝑆
)

+ 𝐹𝑆
)

(𝑖 = 1)
(

( )
∑𝑖−1

) , (2)

𝐺𝑐 𝑜𝑛𝑣𝑖_ 𝐺𝐴𝐶 𝐷 𝑀_𝑖 𝐹𝐴_𝑖−1 + 𝑛=1 𝐹𝐴_𝑖−1 + 𝐹𝑆 r

3

where 𝐺𝐴𝐶 𝐷 𝑀_𝑖−1 denotes the function of the 𝑖th ACDM in the 𝑖th
ayer, and 𝐹𝐴_𝑖 signifies the output of the 𝑖th Layer. 𝐺𝑐 𝑜𝑛𝑣_𝑖 refers to the
th convolution operation post-concatenation. The output of the CNN
egment can be represented as

𝐶𝑜𝑢𝑡 =
∑4

𝑖=1 𝐹𝐴_𝑖 + 𝐹𝑆 , (3)

where 𝐶𝑜𝑢𝑡 represents the output of the CNN part. Following this, the
eatures derived from the CNN part are fed into the Transformer part.
imilar to the CNN part, a dense connection operation is integrated
nto the Transformer part. In this case, two efficient trans modules are
sed in succession, with each layer incorporating all features from the
receding layer in the output. Finally, the shallow feature 𝐹𝑆 is added
o mitigate gradient vanishing due to excessive network depth. This
rocess is articulated as follows:

𝑇𝑜𝑢𝑡_1 = 𝐺𝑐 𝑜𝑛𝑣_5
(

𝐺𝑡𝑟𝑎𝑛𝑠_1
(

𝐶𝑜𝑢𝑡
))

, (4)

𝑇𝑎𝑑 𝑑_1 = 𝑇𝑜𝑢𝑡_1 + 𝐶𝑜𝑢𝑡, (5)

𝑇𝑜𝑢𝑡_2 = 𝐺𝑐 𝑜𝑛𝑣_6
(

𝐺𝑡𝑟𝑎𝑛𝑠_2
(

𝑇𝑎𝑑 𝑑_1
))

, (6)

𝑇𝑎𝑑 𝑑_2 = 𝑇𝑜𝑢𝑡_1 + 𝐶𝑜𝑢𝑡 + 𝑇𝑜𝑢𝑡_2 + 𝐹𝑆 , (7)

where 𝐺𝑐 𝑜𝑛𝑣_𝑖 represents the 𝑖th convolution operation, and 𝐺𝑡𝑟𝑎𝑛𝑠_𝑖
denotes the 𝑖th Transformer operation. 𝑇𝑜𝑢𝑡_𝑖 represents the output
after the 𝑖th trans module operation, while 𝑇𝑎𝑑 𝑑_𝑖 signifies the output
following the 𝑖th addition operation.

Following shallow and deep feature extraction, the features are di-
ected to the reconstruction module. To address gradient vanishing due
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to excessive network depth, we integrate the extraction of shallow and
eep features concurrently in the image super-resolution reconstruction

module. The operational process is as follows:

𝐼𝑆 𝑅 = 𝐻𝑟_1
(

𝑇𝑎𝑑 𝑑_2
)

+𝐻𝑟_2
(

𝐹𝑆
)

, (8)

= 𝐻𝐸 𝐹 𝑅𝐷 𝑁
(

𝐼𝐿𝑅
)

. (9)

The function 𝐻𝑟_𝑖 (⋅) represents the image reconstruction operation. This
process involves a 3 × 3 convolution and a pixel shuffle operation.
𝐻𝐸 𝐹 𝑅𝐷 𝑁 denotes the EFRDN model introduced in this paper.

3.2. Asymmetric convolution distillation module

As depicted in Fig. 1, the Asymmetric Convolution Distillation Mod-
ule (ACDM) consists of three components: the Feature Fusion Lattice
Block (FFLB), the Asymmetric Convolution Residual Block (ACRB), and
Multiple self-calibration Convolutions (MSCC). Among these, two fun-
damental modules are the Group Convolution Residual Block (GCRB)
nd the Self-calibrated Convolution with Channel/Spatial Attention
SCCA/SCSA) unit.
Feature Fusion Lattice Block (FFLB): Building upon the benefits

of lattice blocks (Luo et al., 2023), as illustrated in Fig. 1, we leverage
this design to integrate the Group Convolution Residual Block (GCRB),
Enhanced Spatial Attention (ESA), and Enhanced Feature Fusion Block
(EFFB). We have made significant improvements to the original lattice
blocks. In the original butterfly structure, two 3 × 3 convolutions
were used to extract features from the upper and lower branches.
However, in our proposed FFLB module, we introduced the GCRB
module in combination with the ESA module to extract features more
effectively. The GCRB module utilizes grouped convolution, which
allows for more efficient information extraction without increasing the
number of parameters or computational load. Additionally, while the
original butterfly structure used only a 1 × 1 convolution for simple
channel matching after merging the outputs from the upper and lower
branches, our FFLB module incorporates an EFFB information fusion
module. This further extracts and fuses valuable information, reducing
information loss during network transmission and enhancing the effec-
iveness and richness of high-level features. Meanwhile, through the

butterfly structure, we can output basic units in various combinations.
he Feature Fusion Lattice Block (FFLB) contains two branches, with
wo butterfly structures combining features from these branches using
he Combination Coefficient (CC) structure (Luo et al., 2023), detailed

in Fig. 4. Unlike traditional channel attention that solely utilizes aver-
age pooling, CC incorporates a standard differential branch to enhance
the visual impact of the image.

In each branch, we introduce the Group Convolution Residual Block
GCRB), as depicted in Fig. 1. The GCRB module comprises three
omponents. Initially, features are extracted through point convolution,

followed by normalization, activation, and a fourfold reduction in
channel count before progressing to the second part. The second part
involves a 3 × 3 depth-separable convolution, accompanied by normal-
ization and activation operations. Subsequently, the feature transitions
to the third part, which mirrors the first part but with a fourfold
increase in channel count to restore the initial channels. The mod-
ule concludes by adding the original input to the output, extracting
omprehensive features without escalating parameter count through
perations like point convolution, depth-separable convolution, and
hannel adjustments.

Following GCRB, we implemented the Enhanced Spatial Attention
(ESA) unit to extract significant spatial features. More precisely, for the
input feature 𝐸𝑖𝑛 directed to the upper and lower branches, we define
𝐹𝐺 𝐶 𝑅𝐵_1 as the initial GCRB operation, and 𝐹𝐸 𝑆 𝐴_1 as the first ESA unit
peration. The operation in the lower branches can be expressed as:

( ( ))
𝑙𝑖−1 = 𝐹𝐸 𝑆 𝐴_1 𝐹𝐺 𝐶 𝑅𝐵_1 𝐸𝑖𝑛 , (10) i

4

Fig. 2. The architecture of Self-calibrated Convolution with Channel Attention (SCCA)
nd Self-calibrated Convolution with Spatial Attention (SCSA) units.

where 𝑙𝑖−1 indicates the output of the initial lower branch. Subse-
quently, the upper and lower branches are linked through the first
butterfly mechanism, described as

𝑈𝑖−1 = 𝑋𝑖𝑛 + 𝐵𝑖−1
(

𝑙𝑖−1
)

, (11)

𝐿𝑖−1 = 𝑙𝑖−1 + 𝐴𝑖−1
(

𝐸𝑖𝑛
)

, (12)

where 𝐵𝑖−1 (⋅) and 𝐴𝑖−1 (⋅) denote the combination coefficient values for
upper and lower branch features. 𝑈𝑖−1 and 𝐿𝑖−1 represent the output of
the initial combination of the upper and lower branches. Subsequently,
𝑈𝑖−1 and 𝐿𝑖−1 are fed into a second butterfly structure mirroring the
first. In this structure, 𝐹𝐺 𝐶 𝑅𝐵_2 represents the second GCRB operation,
and 𝐹𝐸 𝑆 𝐴2_ signifies the second ESA unit. The input to the branch in
the second composite structure is described as

𝑢𝑖 = 𝐹𝐸 𝑆 𝐴_2
(

𝐹𝐺 𝐶 𝑅𝐵_2
(

𝑈𝑖−1
))

, (13)

where 𝑢𝑖 represents the input on the branch of the second combination.
imultaneously, the operation of the second butterfly combination can
e articulated as

𝑈𝑖 = 𝑢𝑖 + 𝐵𝑖
(

𝐿𝑖−1
)

, (14)

𝐿𝑖 = 𝐿𝑖−1 + 𝐴𝑖
(

𝑢𝑖
)

, (15)

where 𝑈𝑖 and 𝐿𝑖 denote the combined output of the second upper and
lower branches respectively. Bi (⋅) and Ai (⋅) denote the combination
coefficient values for upper and lower branch features. The results from
the upper and lower branches are subsequently weighted, added, and
then output through the EFFB module.

In the Enhanced Feature Fusion Block (EFFB) as shown in Fig. 1, we
initially utilize the GCRB module to extract features. Subsequently, we
merge the extracted outputs from the first and second GCRB modules
through a 3 × 3 convolution module, followed by the SCSA module
we designed. This resulting fusion output is then combined with the
output from the third GCRB module, undergoes a 3 × 3 convolution,
and is directed into the SCCA module we designed.

In the SCSA/SCCA module, as depicted in Fig. 2, self-calibrating
convolution is employed. Initially, the input is divided into left and
ight branches based on channels. The left branch undergoes self-
alibration by incorporating spatial or channel attention to enhance
ffective feature extraction, while the right branch maintains the origi-
al spatial context through a basic convolution operation. Upon merg-
ng the two intermediate outputs, a 3 × 3 convolution is conducted,
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Fig. 3. The architecture of Asymmetric Convolution Residual Block (ACRB) and
Multiple Self-Calibrated Convolution (MSCC) units.

followed by the addition of the initial input. Ultimately, the output,
long with the original input 𝐸𝑖𝑛, serves as the overall EFFB output.
his operation within the EFFB module is represented as shown in the
ollowing formula:

𝐹𝑜𝑢𝑡 = 𝐸𝑖𝑛 + 𝐹𝐸 𝐹 𝐹 𝐵
(

𝑆1
(

𝑈𝑖
)

+ 𝑆2
(

𝐿𝑖
))

, (16)

where 𝐹𝑜𝑢𝑡 represents the output of the FFLB module, 𝐹𝐸 𝐹 𝐹 𝐵 de-
notes the function of the EFFB unit, while 𝑆1, 𝑆2 denote the weight
oefficients of each branch.
Asymmetric Convolution Distillation Module (ACDM): Building

pon IMDN (Hui et al., 2019) and RFDN (Liu et al., 2020), we have
enhanced and introduced to create a unique characteristic distillation

odule. As illustrated in Fig. 1, following channel splits, the module
branches into two paths. One path includes an Asymmetric Convolution
Residual Block (ACRB), generating the distillation feature. In the ACRB

odule, the original 3 × 3 convolution is replaced by three parallel
onvolution: 1 × 3, 3 × 3, 3 × 1, as depicted in Fig. 3. This operation

trims parameter count while enhancing the square convolution kernel’s
skeleton information. Additionally, the results from the three channels’
convolutions are summed, passed through an activation function, and
dded to the original input to enrich image feature details. The other
ath refines the coarse features in progress, labeled the refinement
ayer. In this branch, a 3 × 3 convolution is initially processed through
ur proposed FFLB module for advanced feature extraction, followed by
dditional distillation of the features. The complete distillation process
nfolds as

𝑋𝑟𝑒𝑚𝑎𝑖𝑛_1, 𝑋𝑑 𝑖𝑠𝑡𝑖𝑙 𝑙_1 = 𝐹𝑠𝑝𝑙 𝑖𝑡
(

𝑋𝑖𝑛
)

, (17)

𝑋𝑑 𝑖𝑠𝑡𝑖𝑙 𝑙_1 = 𝐹𝐴𝐶 𝑅𝐵_1
(

𝑋𝑑 𝑖𝑠𝑡𝑖𝑙 𝑙_1
)

, (18)

𝑋𝑟𝑒𝑚𝑎𝑖𝑛_1 = 𝐹𝐹 𝐹 𝐿𝐵_1
(

𝐺𝑐 𝑜𝑛𝑣_1
(

𝑋𝑟𝑒𝑚𝑎𝑖𝑛_1
))

. (19)

𝑋𝑟𝑒𝑚𝑎𝑖𝑛_2, 𝑋𝑑 𝑖𝑠𝑡𝑖𝑙 𝑙_2 = 𝐹𝑠𝑝𝑙 𝑖𝑡
(

𝑋𝑟𝑒𝑚𝑎𝑖𝑛_1
)

, (20)

𝑋𝑑 𝑖𝑠𝑡𝑖𝑙 𝑙_2 = 𝐹𝐴𝐶 𝑅𝐵_2
(

𝑋𝑑 𝑖𝑠𝑡𝑖𝑙 𝑙_2
)

, (21)

𝑋𝑟𝑒𝑚𝑎𝑖𝑛_2 = 𝐹𝐹 𝐹 𝐿𝐵_2
(

𝐺𝑐 𝑜𝑛𝑣_2
(

𝑋𝑟𝑒𝑚𝑎𝑖𝑛_2
))

. (22)

𝑋𝑟𝑒𝑚𝑎𝑖𝑛_3, 𝑋𝑑 𝑖𝑠𝑡𝑖𝑙 𝑙_3 = 𝐹𝑠𝑝𝑙 𝑖𝑡
(

𝑋𝑟𝑒𝑚𝑎𝑖𝑛_2
)

, (23)

𝑋𝑑 𝑖𝑠𝑡𝑖𝑙 𝑙_3 = 𝐹𝐴𝐶 𝑅𝐵_3
(

𝑋𝑑 𝑖𝑠𝑡𝑖𝑙 𝑙_3
)

, (24)

𝑋𝑟𝑒𝑚𝑎𝑖𝑛_3 = 𝐺𝑐 𝑜𝑛𝑣_4
(

𝐹𝐹 𝐹 𝐿𝐵_3
(

𝐺𝑐 𝑜𝑛𝑣_3
(

𝑋𝑟𝑒𝑚𝑎𝑖𝑛_3
)))

. (25)

Here, 𝑋𝑟𝑒𝑚𝑎𝑖𝑛_𝑖 (𝑖 = 1, 2, 3) represents the remaining features,
𝑑 𝑖𝑠𝑡𝑖𝑙 𝑙_𝑖 (𝑖 = 1, 2, 3) denotes the distilled features, 𝐹𝐹 𝐹 𝐿𝐵_𝑖 (𝑖 = 1, 2,

3) represent the function of the FFLB unit, 𝐹𝑠𝑝𝑙 𝑖𝑡 expresses the function
of the channel split, and 𝐹𝐴𝐶 𝑅𝐵_𝑖 (𝑖 = 1, 2, 3) represent the function of
the ACRB unit.
 n

5

Fig. 4. The process of Transformer Block (Trans) and Combination Coefficient (CC)
learning.

Following the feature distillation process, the final FFLB-operated
feature in the refinement branch is extracted through a 3 × 3 convolu-
tion and combined with the previously distilled feature. After fusion, a
reduction in channel count is achieved through a 3 × 3 convolution. We
propose a new structure, Multiple Self-Calibrated Convolutions (MSCC),
as depicted in Fig. 3. In the MSCC module, we initially conducted
the Self-calibrated Convolution with Spatial Attention (SCSA) opera-
tion to extract valuable spatial information, followed by channel-level
information extraction through the Self-calibrated Convolution with
Channel Attention (SCCA) module. Ultimately, the output is weighted
ia SCCA and added as the final output. These operations are detailed
n the following formula:

𝑋𝑐 𝑜𝑛𝑐 𝑎𝑡 = 𝐶 𝑜𝑛𝑐 𝑎𝑡 (𝑋𝑑 𝑖𝑠𝑡𝑖𝑙 𝑙_1, 𝑋𝑑 𝑖𝑠𝑡𝑖𝑙 𝑙_2, 𝑋𝑑 𝑖𝑠𝑡𝑖𝑙 𝑙_3, 𝑋𝑟𝑒𝑚𝑎𝑖𝑛_3
)

, (26)

𝑋𝑜𝑢𝑡 = 𝐹𝑀 𝑆 𝐶 𝐶
(

𝑋𝑐 𝑜𝑛𝑐 𝑎𝑡
)

+𝑋𝑖𝑛, (27)

where ‘‘Concat’’ signifies the fusion of features from spatial and channel
imensions. 𝐹𝑀 𝑆 𝐶 𝐶 represents the operation of the MSCC module,
𝑐 𝑜𝑛𝑐 𝑎𝑡 denotes the output of the Concat operation, and 𝑋𝑜𝑢𝑡 signifies

the output of the ACDM module.

3.3. Efficient transformer

A pure CNN network still faces challenges in high-quality image
eproduction. CNNs typically have a fixed-size receptive field, limiting

their ability to capture global image information. For high-quality
image reproduction, it is essential to capture long-range dependencies
and global context, but traditional CNNs often struggle with this. Ad-
ditionally, while pooling layers and downsampling operations in CNNs
reduce computational load and help extract high-level features, they
can also cause the loss of important details, negatively impacting image
quality. As a result, CNNs may fall short in capturing intricate details
and structures, which can affect their ability to effectively reconstruct
fine textures in an image.

While CNNs are skilled at extracting local features and details,
ransformers excel in capturing global context and long-term depen-
encies. Combining these two approaches allows for the integration of
ocal details with global structure, improving the overall comprehen-
iveness of feature extraction. Transformers, with their self-attention
echanisms, enhance the understanding of relationships between dis-

ant pixels, leading to better image quality and detailed reconstruction.
eanwhile, CNNs offer computational efficiency through convolutions,
hile Transformers provide superior handling of long-term dependen-

ies. Together, they achieve a balance between computational effi-
iency and modeling capability. This paper introduces an efficient
ransformer model based on CNN. While ensuring model lightweight-
ess, we integrate global image information extraction to combine local
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and global details, enhancing model performance. Illustrated in Fig. 4,
we draw inspiration from ESRT (Lu et al., 2022), utilizing Efficient

ulti-head Attention (EMHA) and multi-layer Perceptrons (MLPs) to
ptimize GPU memory usage during training. With the input denoted as

𝑇𝑖𝑛 and the output as 𝑇𝑜𝑢𝑡, the Transformer process can be summarized
s follows:

𝑇𝐴𝑡𝑡𝑒𝑛 = 𝑇𝑖𝑛 + 𝐹𝐸 𝑀 𝐻 𝐴
(

𝐹𝑁 𝑜𝑟𝑚
(

𝑇𝑖𝑛
))

, (28)

𝑇𝑜𝑢𝑡 = 𝑇𝐴𝑡𝑡𝑒𝑛 + 𝐹𝑀 𝐿𝑃
(

𝐹𝑁 𝑜𝑟𝑚
(

𝑇𝐴𝑡𝑡𝑒𝑛
))

, (29)

where 𝐹𝑁 𝑜𝑟𝑚 represents the layer normalization operation. 𝑇𝐴𝑡𝑡𝑒𝑛 stands
or the output of the attention module. Additionally, 𝐹𝐸 𝑀 𝐻 𝐴 and 𝐹𝑀 𝐿𝑃
epresent the functions of the EMHA and MLP modules, respectively.

Building on Vaswani et al. (2017), each head of the EMHA is
equired to conduct scaled dot product attention, followed by the ag-
regation of all outputs for a linear transformation to generate the final
utputs. The scaled dot product attention operation can be represented
s

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾 , 𝑉 ) = 𝑆 𝑜𝑓 𝑡𝑚𝑎𝑥(𝑄𝐾𝑇
√

𝑑𝑘
)𝑉 , (30)

where 𝑄, 𝐾, and 𝑉 represent the query matrix, key matrix, and value
atrix, while 𝑆 𝑜𝑓 𝑡𝑚𝑎𝑥 denotes the softmax operation function.

3.4. Loss function

To ensure a fair comparison of experimental results, we also utilize
he 𝐿1 loss function to optimize our experimental model. For the
raining set

{

𝐼 𝑖𝐿𝑅, 𝐼 𝑖𝐻 𝑅
}𝑁
𝑖=1 with 𝑁 images, the objective of the EFRDN

odel is to minimize the values of the following loss function formula:

(𝛩) = 1
𝑁

𝑁
∑

𝑖=1

‖

‖

‖

𝐸 𝐹 𝑅𝐷 𝑁 (𝐼 𝑖𝐿𝑅, 𝛩) − 𝐼 𝑖𝐻 𝑅
‖

‖

‖1
, (31)

where 𝐸 𝐹 𝑅𝐷 𝑁 denotes the parameter set of EFRDN, and ‖.‖1 is the 𝐿1
orm. The stochastic gradient descent algorithm is applied to optimize
his loss function.

4. Experiments

4.1. Datasets and evaluation metrics

In this experiment, we utilize the DIV2K dataset, a collection of
high-definition images depicting various natural scenes, for training
the model. The DIV2K dataset comprises 900 high-resolution images,
with the initial 800 images used for training and the remaining 100
for validation. Low-resolution images are generated using a double-
triple downscaling method. To assess the efficacy of EFRDN, we employ
the Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al., 2012), Ur-
an100 (Huang et al., 2015), BSDS100 (Martin et al., 2001), and
anga109 (Matsui et al., 2017) benchmark datasets for testing. Evalua-

tion metrics such as PSNR and SSIM (Wang et al., 2004) are employed.

4.2. Implementation details

This study enhanced the training dataset by applying random rota-
tions and horizontal flips at various angles to increase data diversity.
During model training, we set the initial learning rate to 2 × 10−4 and
decay it to 6.25 × 10−6 following the cosine annealing strategy. The
model was optimized using the Adam optimizer and trained on the
NVIDIA RTX 2080Ti GPU within the PyTorch framework. Through-
out the training, 48 × 48 patches were randomly extracted from the
training set for training input. Data augmentation techniques such as
random rotation and horizontal flipping were applied to enhance the
data. In the final model, both the CNN and Transformer modules had
an input channel size of 32 channels.
6

4.3. Comparison with state-of-the-arts

The quantitative comparison results for ×2, ×3, and ×4 image super-
esolution are presented in Table 1. The best and the second-best re-

sults are highlighted and underlined, respectively. EFRDN is compared
against IDN (Hui et al., 2018), CARN (Ahn et al., 2018), IMDN (Hui
et al., 2019), AWSRN-M Wang et al. (2019), MADNet (Lan et al., 2020),

CDN (Li et al., 2021), SMSR (Wang et al., 2021), ECBSR (Zhang
et al., 2021b), LAPAR-A (Li et al., 2020), HPUN-M (Sun et al., 2022),

LADSR (Zhang et al., 2021a), LCRCA (Peng et al., 2022), DRSAN-
48s (Park et al., 2023), LatticeNet (Luo et al., 2023), AFAN-M (Wang
et al., 2023b), and FDSCSR-S (Wang et al., 2023a), which are leading
lightweight image super-resolution models in mainstream benchmark
datasets. EFRDN demonstrates superior or second-best performance
across most datasets, with fewer parameters and computational require-
ments compared to many methods, showcasing improved performance
with reduced complexity. Particularly noteworthy is the significant
performance enhancement on the Urban100 and Manga109 datasets
in the comparison table across the three scaling factors. Our model’s
training on the RTX 2080Ti GPU and its low computational demand
are among our key advantages.

Additionally, we present a visual comparison of EFRDN with other
odels. As depicted in Fig. 5, our EFRDN excels in restoring texture
etails in super-resolved images. The comprehensive comparison and

analysis of all data and images validate the effectiveness and efficiency
of our model. In img_062 (×2), although there is a slight fuzziness,
EFRDN outperforms other methods in restoring image textures. Simi-
larly, in img_148026 (×3), EFRDN accurately restores line orientation,
enhancing image clarity. Notably, in img_038 (×4), EFRDN reconstructs
texture images that closely resemble HR images.

4.4. Ablation studies

4.4.1. Asymmetric convolution distillation module (ACDM)
To assess the effectiveness of our Asymmetric Convolution Distil-

lation Module (ACDM), we replaced it with IMDB (Hui et al., 2019)
and RFDB (Liu et al., 2020), respectively. To ensure a fair comparison,
all models were tuned to approximately 650K parameters, trained for
a ×4 upscaling factor, and evaluated on the Set5 and Manage100
test datasets. The results are presented in Table 2. The outcomes
indicate that our ACDM outperforms the other two modules within the
same framework and with a similar parameter count. Although ACDM
requires a slightly higher computational load, this increase is minor
compared to the performance enhancement achieved. The effective-
ness of our ACDM module is clearly demonstrated. Subsequently, we
validate the effectiveness of each module within ACDM:

The effectiveness of ACRB: To assess the effectiveness of the
symmetric Convolution Residual Block (ACRB), we conducted two
blation experiments. In the first experiment, we directly removed the
CRB module and BN layer. The data in Table 3 indicates a significant

decrease in model performance. In the second experiment, to showcase
the effectiveness of the ACRB module, we substituted the ACRB and
BN layers in the ACDB module with a standard 3 × 3 convolution.
This operation mirrors the one in the RFDB (Liu et al., 2020) module,

here the distilled feature undergoes a 3 × 3 convolution for channel
ransformation and feature extraction after the feature split. Table 3

illustrates that the model size and computational load remained rela-
tively unchanged after the replacement. However, there was a decrease
in model performance, highlighting the superior effectiveness of our
proposed strategy over that of RFDB (Liu et al., 2020).

The effectiveness of MSCC and FFLB: To further validate the
effectiveness of the Multiple Self-Calibrated Convolutions (MSCC) and
Feature Fusion Lattice Block (FFLB) modules, we individually removed
these modules from ACDM, trained the models under a ×4 upscaling
factor, and evaluated them on the Urban100 dataset. The test results
are presented in Table 3 below. The data in the table highlights that
both the MSCC and FFLB modules we designed effectively enhance the
performance of the network model.
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Table 1
Performance comparisons with other advanced CNN-based SISR models.

Methods Scale Params Multi-Adds Set5 Set14 BSD100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

IDN (Hui et al., 2018)

×2

553K 124.6G 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.01/0.9749
CARN (Ahn et al., 2018) 1,592K 222.8G 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.32/0.9765
IMDN (Hui et al., 2019) 694K 158.8G 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774
MADNet (Lan et al., 2020) 878K 187.1G 37.85/0.9600 33.38/0.9161 32.04/0.8979 31.62/0.9233 –
DCDN (Li et al., 2021) 756K – 38.01/0.9606 33.52/0.9166 32.17/0.8996 32.16/0.9283 38.70/0.9773
SMSR (Wang et al., 2021) 985K 351.5G 38.00/0.9601 33.64/0.9179 32.17/0.8990 32.19/0.9284 38.76/0.9771
ECBSR (Zhang et al., 2021b) 596K 137.3G 37.90/0.9615 33.34/0.9178 32.10/0.9018 31.71/0.9250 –
LAPAR-A (Li et al., 2020) 548K 171.0G 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283 38.67/0.9772
GLADSR (Zhang et al., 2021a) 812K 187.2G 37.99/0.9608 33.63/0.9179 32.16/0.8996 32.16/0.9283 –
LCRCA (Peng et al., 2022) 813K 186.0G 38.05/0.9607 33.65/0.9181 32.17/0.8994 32.19/0.9285 –
DRSAN-48s (Park et al., 2023) 650K 150.0G 38.08/0.9609 33.62/0.9175 32.19/0.9002 32.16/0.9286 –
LatticeNet (Luo et al., 2023) 756K 169.5G 38.06/0.9607 33.70/0.9187 32.20/0.8999 32.25/0.9288 –
AFAN-M (Wang et al., 2023b) 682K 163.4G 37.99/0.9605 33.57/0.9175 32.14/0.8994 32.08/0.9277 38.58/0.9769
FDSCSR-S (Wang et al., 2023a) 466K 121.8G 38.02/0.9606 33.51/0.9174 32.18/0.8996 32.24/0.9288 38.67/0.9771

EFRDN (Ours) 768K 111.6G 38.03/0.9609 33.65/0.9185 32.16/0.8997 32.34/0.9298 38.86/0.9776

IDN (Hui et al., 2018)

×3

553K 56.3G 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381
CARN (Ahn et al., 2018) 1,592K 118.8G 34.29/0.9255 30.29/0.8407 29.06/0.8493 28.06/0.8493 33.43/0.9427
IMDN (Hui et al., 2019) 703K 71.5G 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
MADNet (Lan et al., 2020) 930K 88.4G 34.16/0.9253 30.21/0.8398 28.98/0.8023 27.77/0.8439 –
DCDN (Li et al., 2021) 765K – 34.41/0.9273 30.31/0.8417 29.08/0.8045 28.17/0.8520 33.54/0.9441
SMSR (Wang et al., 2021) 993K 156.8G 34.40/0.9270 30.33/0.8412 29.10/0.8050 28.25/0.8536 33.68/0.9445
LAPAR-A (Li et al., 2020) 594K 114.0G 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523 33.51/0.9441
GLADSR (Zhang et al., 2021a) 821K 88.2G 34.41/0.9272 30.37/0.8418 29.08/0.8050 28.24/0.8537 –
LCRCA (Peng et al., 2022) 822K 83.6G 34.40/0.9269 30.36/0.8422 29.09/0.8049 28.21/0.8532 –
DRSAN-48s (Park et al., 2023) 750K 78.0G 34.47/0.9274 30.35/0.8422 29.11/0.8060 28.26/0.8542 –
LatticeNet (Luo et al., 2023) 765K 76.3G 34.40/0.9272 30.32/0.8416 29.10/0.8049 28.19/0.8513 –
AFAN-M (Wang et al., 2023b) 681K 80.8G 34.35/0.9263 30.31/0.8423 29.06/0.8053 28.11/0.8522 33.44/0.9440
FDSCSR-S (Wang et al., 2023a) 471K 54.6G 34.42/0.9274 33.37/0.8429 29.10/0.8052 28.20/0.8532 33.55/0.9443

EFRDN (Ours) 768K 49.5G 34.44/0.9275 30.38/0.8414 29.10/0.8059 28.29/0.8542 33.73/0.9453

IDN (Hui et al., 2018)

×4

553K 32.3G 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942
CARN (Ahn et al., 2018) 1,592K 90.9G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.42/0.9070
IMDN (Hui et al., 2019) 715K 40.9G 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
MADNet (Lan et al., 2020) 1,002K 54.1G 31.95/0.8917 28.44/0.7780 27.47/0.7327 25.76/0.7746 –
DCDN (Li et al., 2021) 777K – 32.21/0.8949 28.57/0.7807 27.55/0.7356 26.09/0.7855 30.41/0.9072
SMSR (Wang et al., 2021) 1,006K 89.1G 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 30.54/0.9085
ECBSR (Zhang et al., 2021b) 603K 34.7G 31.92/0.8946 28.34/0.7817 27.48/0.7393 25.81/0.7773 –
LAPAR-A (Li et al., 2020) 659K 94.0G 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.42/0.9074
GLADSR (Zhang et al., 2021a) 826K 52.6G 32.14/0.8940 28.62/0.7813 27.59/0.7361 26.12/0.7851 –
LCRCA (Peng et al., 2022) 834K 47.7G 32.20/0.8948 28.60/0.7807 27.57/0.7653 26.10/0.7851 –
DRSAN-48s (Park et al., 2023) 730K 57.6G 32.25/0.8945 28.55/0.7817 27.59/0.7374 26.14/0.7875 –
LatticeNet (Luo et al., 2023) 777K 43.6G 32.18/0.8943 28.61/0.7812 27.57/0.7355 26.14/0.7844 –
AFAN-M (Wang et al., 2023b) 692K 50.9G 32.18/0.8939 28.62/0.7826 27.58/0.7373 26.13/0.7876 30.45/0.9085
FDSCSR-S (Wang et al., 2023a) 478K 31.1G 32.25/0.8959 28.61/0.7821 27.58/0.7367 26.12/0.7866 30.51/0.9087

EFRDN (Ours) 767K 27.9G 32.33/0.8964 28.67/0.7833 27.63/0.7384 26.37/0.7939 30.76/0.9113
Table 2
Performance comparisons of ACDM with other basic modules on Manga109 dataset.

Scale Methods Params Multi-Adds PSNR/SSIM

×4
EFRDN+IMDB (Hui et al., 2019) 637K 9.8G 30.46/0.9077
EFRDN+RFDB (Liu et al., 2020) 688K 13G 30.52/0.9083
EFRDN+ACDM (Ours) 650K 27.9G 30.76/0.9113
o

e
e
d

t
c
f
d

Table 3
Study of different units in ACDM on Urban100 dataset.

Scale ACRB+BN FFLB MSCC Params Multi-Adds PSNR/SSIM

×4

✗ ✓ ✓ 761K 27.0G 26.24/0.7900
✗a ✓ ✓ 761K 27.0G 26.29/0.7909
✓ ✗ ✓ 640K 17.0G 25.90/0.7777
✓ ✓ ✗ 750K 25.8G 26.25/0.7901
✓ ✓ ✓ 768K 27.9G 26.37/0.7939

a Represents replacing the ACRB unit with a 3 × 3 convolution.

4.4.2. Feature fusion lattice block (FFLB)
We evaluated the effectiveness of each module within the FFLB

module by individually removing the GCRB, EFFB, and CC modules,
 n

7

conducting training under a ×4 upscaling factor, and evaluating them
n the Urban100 dataset. The results are presented in Table 4. Reducing

the performance of any module has a significant decline, indicating that
ach structure of the FFLB module designed by us is reasonable and
ffective, and one is indispensable. This underscores the validity of our
esigned modules.

4.4.3. Dense connection (DC)
Table 5 illustrates the effectiveness of the dense connection struc-

ure utilized. Three experiments were conducted: removing the dense
onnection structure from the CNN part, removing it from the Trans-
ormer part, and removing it from both parts simultaneously. The
ata in the table indicates that the dense connection structure does
ot notably increase the model’s parameter count or computational
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Fig. 5. Visual comparisons of EFRDN with other SR methods on BSDS100 and Urban100 datasets.
E

Fig. 6. CNN and Transformer module intermediate feature visualization.

Table 4
Study of different units in FFLB on Urban100 dataset.

Scale GCRB EFFB CC Params Multi-Adds PSNR/SSIM

×4

✗ ✓ ✓ 762.84K 27.45G 26.34/0.7923
✓ ✗ ✓ 684.5K 18.58G 26.11/0.7849
✓ ✓ ✗ 764.0K 27.9G 26.34/0.7933
✓ ✓ ✓ 767.9K 27.9G 26.37/0.7939

load. However, the iterative utilization of extracted features signif-
cantly enhances the model’s performance while maintaining model
ightweightness.
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Table 5
Study of DC on Urban100 dataset.

Scale CNN-DC Transformer-DC Params Multi-Adds PSNR/SSIM

×4

✗ ✓ 767.9k 27.9G 26.17/0.7882
✓ ✗ 767.9k 27.9G 26.22/0.7898
✗ ✗ 767.9k 27.9G 26.28/0.7997
✓ ✓ 767.9k 27.9G 26.37/0.8964

4.4.4. Comparison with some transformer-based methods
The Transformer-based SISR approach has gained significant at-

tention recently. In this study, we compare EFRDN with some re-
cent Transformer-based methods, namely SwinIR (Liang et al., 2021),
SRT (Lu et al., 2022), and LBNet (Gao et al., 2022b), as shown in

Table 6. The comparison reveals that EFRDN has significantly reduced
the computational load compared to the other models. EFRDN excels in
computational efficiency, offering superior performance with minimal
computation. In detail, our model outperforms the other two models,
except for SwinIR, while also being lighter in weight. It is important
to note that SwinIR was trained on a much larger dataset, Flickr2k,
which includes 2650 HD images, whereas we used the DIV2k dataset
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Table 6
Comparisons with some Transformer-based methods (×4).

Methods Params Multi-Adds Set5 Set14 BSD100 Urban100 Manga109 Average

SwinIR (Liang et al., 2021) 897K 49.6G 32.44/0.8976 28.77/0.7858 27.69/0.7406 26.47/0.7980 30.92/0.9151 29.26/0.8274
ESRT (Lu et al., 2022) 751K 67.7G 32.19/0.8947 28.69/0.7833 27.69/0.7379 26.39/0.7962 30.75/0.9100 29.14/0.8244
LBNet (Gao et al., 2022b) 742K 38.9G 32.29/0.8960 28.68/0.7832 27.62/0.7382 26.27/0.7906 30.76/0.9111 29.12/0.8238
EFRDN (Ours) 767K 27.9G 32.33/0.8964 28.67/0.7833 27.63/0.7384 26.37/0.7939 30.76/0.9113 29.15/0.8247
Fig. 7. Model calculations (left) and execution time (right) study on Set5 dataset (×4).
F
o
T

with only 1000 HD images. Despite this, our model achieves compara-
ble performance with lower computational demands. Overall, EFRDN
strikes a favorable balance between model efficiency and performance,
urther affirming its effectiveness.

In Fig. 6, we provide a visualization of the input image after feature
xtraction by the CNN and Transformer modules. Compared to the
nitial input image, the CNN module first captures rich local features.
ollowing the Transformer module, the edge information and texture
etails become more pronounced, enhancing overall image quality and
etail reconstruction. This confirms the effectiveness of our CNN and
ransformer modules in extracting feature information. The combina-
ion of both modules successfully captures more detailed textures and
lobal structures, leading to high-quality image reconstruction.

4.5. Model complexity studies

Fig. 7 distinctly illustrates the comparisons between EFRDN and
existing methods regarding model size, computational efficiency, ex-
ecution time, and model performance. The figure underscores the
evident advantages of our model in terms of lightweight design and
performance. Meanwhile, EFRDN successfully achieves a harmonious
balance between parameter size and execution time, as demonstrated
in Fig. 7, further emphasizing the efficiency and effectiveness of our

odel.

5. Conclusion

In this study, we introduce the Efficient Feature Reuse Distillation
etwork (EFRDN) model for efficient image super-resolution tasks.
he CNN section of EFRDN comprises four Asymmetric Convolution
istillation Modules (ACDM), with shared interval parameters to re-
uce model parameters. ACDM utilizes a feature distillation structure,
upporting model lightweightness while ensuring efficient feature ex-
raction. Introducing the Transformer structure enables the effective
apture of global feature information. The combination of CNN and
ransformer in EFRDN facilitates the integration of local and global fea-
ures. The framework incorporates a dense connection structure to fuse
eature information at various levels, enhancing model performance.
FRDN effectively balances model size and performance, efficiently
chieving super-resolution tasks. Meanwhile, our EFRDN utilizes a
traightforward series combination of CNN and Transformer, which
resents some limitations. Future work should explore more effective
ethods for integrating local and global features.
9
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